HIGHER TECHNICAL INSTITUTE NICOSIA - CYPRUS ELECTRICAL ENGINEERING DEPARTMENT

ACADEMIC YEAR 1988-1989

BIOMEDICAL AMPLIFIER SYSTEM FOR ELECTROCARDIOGRAPHY SIGNALS

Project submitted by

CHRISTODOULOU GEORGE

in part satisfaction of the award of Diploma of Technician Engineer in Electrical Engineering of the Higher Technical Institute, CYPRUS.

Project supervisor: Mr A. KAPLANIS

Type of project : Individual 📈 Group

Submitted: June 1989

1497

ABSTRACT

A biopotential signal amplifier capable of amplifying ECG signals is discussed here with. The basic idea of such amplifying system is the differential amplifier having a very high input impedance, high Common Mode Rejection Ratio and high Gain.

the basic circuit In more modern systems of the instrumentation amplifier is commonly used. Such a circuit has been designed analysed, constructed and tested and the report that follows gives, apart from the general theory of the action of the heart and the circulation system, mathematical analysis and constructional problems and how these were faced in practice.

machines are of costly and it was not ECG course very possible nor it is claimed that the amplifying system so designed matches in any way any ECG machine. In deed one of terms of this project was the cost of the such an amplifying system should not exceed £30.

However the project has given the author the opportunity to study and learn some of the basic theory of the circulatory system in man, typical ECG systems and the many problems associated with the design construction and testing of biopotential amplifying systems.

CONTENTS

ABSTRACT	II
ACKNOWLEDGMENTS	III
INTRODUCTION	IV
CHAPTER 1: Generally about the heart	
1.1. Anatomy and Function of the heart	1
1.2. Electrical behavior of cardiac cells	2
1.3. the Electrocardiogram	3
CHAPTER 2: Surface electrodes for ECG	
2.1. Theory of electrodes	6
2.2. Metal plate elctrodes	11
CHAPTER 3: Instrument design	
3.1. Basic requirements for a Biopotential amplifier.	13
3.2. The Differential amplifier	15
3.3. Common mode voltage elimination	18
3.4. Magnetic Field interference	20
CHAPTER 4: Description and construction of the	
investigated circuits	
4.1. Proposed circuit	22
4.2. Description of circuits constructed	22
4.3. Construction details	27
CHAPTER 5: Testing and results	
5.1. Introductory tests	30
5.2. Individual testing and Results	30
5.3. Testing with real ECG signals	31
CHAPTER 6: Safety aspects	
6.1. General requirements	34
6.2. Safety classification of medical equipments	34
6.3. Actual case considerations	35
CHAPTER 7: Conclusions and suggestions for	
improvement	
7.1. Conclusions	36
7.2. Suggestions for improvement	37
REFERENCES	39

APPENDICES

APPENDIX A		Basic theory on op-amps
APPENDIX B	3:	Common mode rejection ratio
APPENDIX C	::	Data sheets