REGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING

DIPLOMA PROJECT

AN INVESTIGATION INTO THE USE OF HYDROGEN IN TRANSPORT

> KOLA PETROS M/1054

> > JUNE 2009

"AN INVESTIGATION INTO THE USE OF HYDROGEN IN TRANSPORT"

By

Kola Petros

Project report submitted to the Department of Mechanical Engineering Of the Higher Technical Institute Nicosia Cyprus In partial fulfillment of the requirements for the diploma of

TEGNICAL ENGINEER

in

MECHANICA ENGINEERING

June 2009

HIGHER TECHNICAL INSTITUTE	PROJECT NO
	3830

SUMMARY

Reading someone this project will understand how to produce hydrogen, how fuel cells work and also how these two are connected to make the most efficient and cleaner transportation to be seen in the near future.

The main location and area of investigation of my project was the internet and some e-book, on the other magazine helped to carry out this report.

The main conclusions were that the hydrogen fuel cell vehicles must be the new transport technology to develop and use because if we change to hydrogen power we save the environment.

CONTENTS

	Page
CONTENTS	3
LIST OF FIGURE AND TABLES	5
ACKNOWLEDGMENTS	7
Chapter 1: Hydrogen	8
1.1 General about Hydrogen	8
1.2 Historical Overview	9
1.3 Finding hydrogen	9
1.4 Producing Hydrogen	10
1.4.1 Electrolysis	10
1.4.2 Steam reforming	11
1.4.3 Other Production Methods	11
1.5 Benefits and drawbacks of existing production methods	12
1.6 Using Hydrogen	14
1.7 First hydrogen research organization	14
1.8 Twenty-first century developments	14
1.9 Research in the World about hydrogen	15
1.9.1 United States	15
1.9.2 Japan	16
1.9.3 Canada and Germany	17
1.10 Hydrogen in Cyprus	17
1.11 Hydrogen and Safety	18
1.12 Question about hydrogen	18
1.12.1 Hydrogen has a higher energy density than gasoline or diesel?	18
Chapter 2: Fuel Cell	20
2.1 What are Fuel Cells	20
2.2 History of Fuel Cells	21

2.3 Differences between Fuel Cell and Battery	
2.4 Fuel Cell Emissions and Pollution	22
2.5 Efficiency and Fuel cell	23
2.6 Types of fuel cells	25
2.7 Fuel cell applications	26
2.8 Other Fuel cell applications	27
Chapter 3: Storing Hydrogen	28
3.1 General about storing Hydrogen	28
3.2 Advantages and disadvantages	28
Chapter 4: Hydrogen in Transportation the state of the art	31
4.1 General about Transportation and Hydrogen	31
4.2 The fist vehicle with Hydrogen	31
4.3 Hydrogen in space	32
4.4 Hydrogen and Internal Combustion Engine	33
4.5 Hydrogen and Fuel Cells in transportation	35
4.6 Other vehicle with hydrogen fuel cell	40
4.6.1 Hydrogen and Fuel Cells in a bicycle	40
4.6.2 Hydrogen and Fuel Cells on a plane	41
Chapter 4: Overall Conclusion	43
REFERECES	44
BIBLIOGRAPHY	44
APPENDICES	44
APPENDICES 2	45

List of Figure and Table

PAGE

Figure 1:	Hydrogen atom	8
Figure 2:	Hydrogen cycle	9
Figure 3:	Electrolysis	10
Figure 4:	The hydrogen generator set is capable of producing 114 k VA	
	of power at several voltage levels and is based	
	upon a standard 6.8-liter Ford production engine that	
	has been modified for hydrogen use	19
Figure 5:	Fuel cell	20
Figure 6:	Fuel cell 2	20
Table 1:	Emissions from fuel cell engine	22
Figure 7:	How work a Fuel cell	24
Figure 8:	PEM fuel cell	24
Table 2:	Types of Fuel cells	25
Figure 9:	The world's first certified Fuel Cell Boat (HYDRA),	
	in Leipzig Germany	27
Figure 10:	Type 212 submarine with fuel cell propulsion of the	
	German Navy in dry dock	27
Figure 11:	Compressed hydrogen tank. Photo courtesy of	
	Quantum Fuel Systems Technologies	29
Figure 12:	Hydrogen storage tank 2	30
Figure 13:	Ih2 tank system with information	30
Figure 14:	This 18th century engraving shows four men filling	
	a hydrogen balloon in Paris. The gas was produced by	
	pouring sulfuric acid upon filings of iron.	
	^a UPI/Corbis-Bettman.	31

Figure 15:	The Graf Zeppelin approaching the mooring mast at Mines Field	
	(Los Angeles) after completing its trip from Tokyo in 68 hours for	
	the third successful lap of its historic round the world flight.	
	^a Bettmann/Corbis.	32
Figure 16:	The space shuttle Challenger exploding shortly	
	after lifting off from Kennedy Space Center. AP Images	33
Figure 17:	BMW's hydrogen-powered H2R Record Car was styled at its	
	California Designworks USA studio and is powered by a hydroge	n
	fueled internal combustion engine. ^a Ted Soqui/Corbis	34
Figure 18:	Mercedes-Benz (Daimler AG) Citaro fuel cell bus on	
	Aldwych, London	36
Figure 19:	A zero-emission hydrogen fuel cell bus waits at Aldgate	
	bus station on its first day of service in central London,	
	January 14, 2004. The bus emits only water vapor	36
Figure 20:	GM fuel cell car (section)	37
Figure 21:	The 2005 Honda FCX fuel cell powered vehicle is	
	seen on display during its launch at the Petersen Automotive	
	Museum in Los Angeles on June 29, 2005. ^a	
	, Mario Anzuoni/Reuters/Corbis	37
Figure 22:	Honda fcx clarity hydrogen fuel cell car	38
Figure 23:	Toyota FCHV PEM FC fuel cell vehicle	38
Figure 24:	Toyota's FCHV-BUS	39
Figure 25:	Yamaha hydrogen fueled FC-AQEL	39
Figure 26:	mazda rx-8 hydrogen RE	40
Figure 27:	fuel cell bike	41
Figure 28:	The Boeing Fuel Cell Demonstrator achieved straight-level	
	flight on a manned mission powered by hydrogen	42

ACKNOWLEDGMENT

I would like to express my sincere appreciation to my Supervisor, Dr. Andrea Stassi, Lecturer at the Higher Technical Institute Nicosia Cyprus, for his help, advice and comments about my Diploma project.

I would like to thank Mr. Costanino who helped me to fix some mistakes in my grammar.