HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COLLASE

DIPLOMA PROJECT

ASSEMBLY & CONTROL OF A LEGO ROBOT

M/986

PANAYIOTIS KOTSONIAS

JUNE 2004

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINNERING COURSE

DIPLOMA PROJECT

ASSEMBLY & CONTROL OF A LEGO ROBOT

M/986

PANAYIOTIS KOTSONIAS

JUNE 2004

ASSEMBLY & CONTROL OF A LEGO ROBOT

By

Panayiotis Kotsonias

Project Report

Submitted to

The Department Of Mechanical Engineering

Of the Higher Technical Institute

Nicosia Cyprus

In partial fulfillment of the requirements For the diploma of

TECHNICIAN ENGINEER

IN

MECHANICAL ENGINEERING

JUNE 2004

Acknowledgements

In this stage of my studies in **Higher Technical Institute** I was assigned to assemble and program a robot that would find its own way out through a maze. This Project would serve as a fulfillment for my mechanical engineering diploma.

Through the research and development this project required, I obtained valuable knowledge and became familiar with Robotics and Robots in general.

For the knowledge and benefits I obtained through this project I would like to express my thanks to my supervisors **Dr. Costas Neocleous** and **Mr. Paraskevas Demetriou**, senior lecturers at the Higher Technical Institute for the valuable help they offered to me.

> PANAYIOTIS KOTSONIAS 3RD YEAR STUDENT IN MECHANICAL ENGINEERING H.T.I.

TABLE OF CONTENTS

PART 1

Introduction to Robotics	1
General uses of Robots	2
Asimov's 3 laws of robotics	4
State of the art Robots	4

CHAPTER 2

The Robot system	9
2.1 Basic Components of a Robot System	10
2.2 Robots kinematics	11
2.3 The mechanical structure of a robot	12
2.4 Trajectory planning	12
2.5 Locomotion and mobile robots	13
2.6 Sensors	15

CHAPTER 3

Robot programming	16
3.1 Types of Robot programming languages	18
3.2 On line and off line programming languages	18

CHAPTER4

Sensors and Grippers	20
4.1 sensors	20
4.1.1 Classification of sensors	21
4.1.2 Various kinds of sensors	25
4.2 Grippers	31
4.2.1 Kinds of grippers	32

PART 2

Applications of robots

35

CHAPTER 5	37
5.1 industrial robots	37
5.1.1 Material handling	39
5.1.2 Coating	40
5.1.3 Cutting operations	41
5.1.4 Product assembly	43
5.1.5 Welding processes	44
5.2 types of industrial robots	46

CHAPTER 6

Medical	robots	50

CHAPTER 7

Military robots	52
-----------------	----

CHAPTER 8

Space robots	54
CHAPTER 9	
Service & hobby robots	57

PART 3

CHAPTER 10	
10.1 Assembly and control of a Lego Robot	59
10.2 Features and Flexibility	59
10.2.1 Direct data transmitting	60

CHAPTER 11

Designing & programming the robot	62
11.1 Various alternative Robot designs	62
11.2 Final Robot Design	62
11.2.1 Robots kinematics	64
11.2.2 Programming of the Robot	65

FIGURES

1.1 SONY AIBO	5
1.2 Honda's ASIMO	6
1.3 Asimo working out	6
1.4 ASIMO playing football	6
1.5 The Robonaut	7
1.6 Robonaut in space	8
1.7 Robonaut's arm	8
2.1 Robot system	9
2.2 Robot arm joints	10
2.3 Locomotion Robot	14
4.1 Block diagram of Robot	20
4.2 Locomobile Robot	21
4.3 Optical transducer	24
4.4 Acoustic transducer	24
4.5 Infrared sensor	25
4.6 Proximity sensors	26
4.7 Force sensor	28
4.8 Touch sensors	29
4.9 Rotation sensor	29
4.10 Micro transducer	30
4.11 Humanoid hand	31
4.12 Various grippers	32
4.13 Compliance sensing gripper	33

,

- 4.14 Industrial robot gripper 34
- 34 4.15 Standard gripper
- 39 5.1 Pick and place robot
- 5.2 Coating Robot 40
- 42 5.3 Plasma cutting Robot
- 5.4 Cutting Robot 42
- 5.5 ARC welding Robot 45
- 5.6 Cartesian Robot 46 5.7 Cylindrical Robot 47
- 48 5.8 Polar Robot 48 5.9 Scara Robot
- 49 5.10 Articulated Robot 49 5.11 Parallel Robot
- 6.1 Laboratory Robot 50
- 6.2 Surgery assisted by Robot 51 51
- 6.3 Bionic arm
- 7.1 Sniper Robot 52
- 7.2 Military Robot 53 7.3 Bomb defuse Robot 53
- 8.1 Planet exploration Robot 55 8.3 Planet exploration Robot 56 8.4 Space station 56

9.1 Service Robot	57
9.2 Hobby Robot	58
9.3 Hobby Robot	58
10.1 Touch sensor graph	60
10.2 Temp. sensor graph	61
10.3 Light sensor graph	62
11.1 The program	66