DESIGN OF SOLAR WATER AND SPACE HEATING FOR A BUILDING

by

ARISTIDOU ANDREAS

PROJECT REPORT Submitted to: the department of mechanical Engineering of the Higher Technical Institute

Nicosia - Cyprus

In partial fulfilment of the requirements for the diploma of

TECHNICIAN ENGINEER IN MECHANICAL ENGINEERING

June 1995

and a subscription of the second s	Provident Contraction Contraction Contraction Contraction
HIGHER	PROJECK NO
TECHNICAL	DUI1 V
INSTITUTE	2111

ACKNOWLEDGEMENT

I would like to express my sincere thanks and appriciation to my supervisor Mr I.Michaelides and to Mr Marios Panayiotou from "DEKSA LTD" for their help and quidance throughout this project.

INTRODUCTION

As the year 2000 is approximiting people all over the world are talking about shortage in fuels and that other sources of energy must be found.

One source of energy that cause a lot of interest among the scientists is the solar energy because is the most plentyful energy that there is today and is also free.

Solar energy is the world's most abundant permanent source of energy. The ammount of solar energy intercept by the earth is 170 trilion KW , an ammount 5000 times greater than the sum of all other inputs (terrestrial nuclear , geothermal and gravitational energies and lunar gravitational energy).

Solar radiation had only early practical use as a drying agent for foods , in the dehydration of sea water to obtain salts and in the distillation of sea water.

Many studies have been made on how to collect and store the solar energy and for the past 25 years scientists all over the world are trying to design better collective mediums in

1

order to collect more solar energy as possible. The most common collective medium today is the flat plate collector. Also are different ways for better storage of the solar energy.

Since solar energy is available only during daylight hours and during periods when the sun is not significantly obscured by clouds an auxiliary energy must be used to the system when there is insufficient solar energy to supply the heat requirements of the building.

Solar energy can be utilized for heating of buildings by placing flat plate collectors by either on the roof or the side of the building.Collectors are fairly simple in construction.A black surface is used to absorb the sun light.This surface is covered with one or several planes of glass which reduce radiation.

2

CONTENTS :

Acknowledgement

Intr	roduction	1
1.0	SOLAR ENERGY	3
	1.1 The sun	3
	1.2 Definition of terms	4
	1.3 Solar radiation incident on the earth's	
	surface	5
	1.4 Solar radiation parameters	6
2.0	SOLAR HEATING SYSTEMS	7
	2.1 Passive heating system	7
	2.2 Active heating system	8
3.0	THERMAL ENERGY STORAGE	9
	3.1 Sensible and latend heat storage	9
	-	
4.0	COLLECTION OF SOLAR ENERGY	12
	4.1 Concentrating collectors	12
	4.2 Flat plate collectors	13
	4.3 Comparison of hydronic and air type collectors	14
	4.4 Collector placement	14
	4.5 Collectors arrangement	15
5.0	HEAT REQUIREMENTS	16
	5.1 Structure or fabric losses	17
	5.2 Inflintration or ventilation losses	17

	5.3 Hot water heating demand	17
	5.4 Overall transimattance coefficient	18
	5.4.2 Calculation of U-value	20
	5.5 Building dimencions	24
6.0	HEAT EMMISION AND EMITTER SELECTION	34
X	6.1 Natural convectors	34
	6.2 Forced convectors	35
	6.3 Floor heating	36
	6.4 Radiators	36
	6.5 Emitter selection	37
	6.6 Pipe sizing	40
7.0	SELECTION AND INSTALLATION OF THE SOLAR	
	SYSTEM	42
	7.1 Operation of the system	43
	7.2 Distribution circuit	43
8.0	SELECTION AND SIZING OF EQUIPMENT	45
	8.1 Selection of the solar collector	45
	8.2 Efficiency of the solar collector	45
	8.3 Optimum collector area	50
	8.4 Sizing of DHW storage tank	55
	8.5 Selection and sizing of storage tank	56
	8.6 Selection and sizing of pump	56
9.0	CASE STUDY	62
	9.1 Selection and size of boiler	62
	9.2 Selection of burner	63
	9.3 Sizing of the oil tank	63
	9.4 Sizing of the chimney	64

10.0	ECONOMICAL	ANALYSIS	OF	THE	SYSTEM	53 67 24 39 2	: 32 34 52 63 12	66
	CONCLUSION	18		5 N H H H I	а ж и е è ж н	к н 19 6 19		75
	REFERENCES		53 94 94 1	а 13 м н		ta es 24 ca 64 F	l tet tat tat tat	77
	APPENDICES) 14. 47 55 15 17 1	78