COMPUTER AIDED DESIGN OF A GEAR TRAIN SYSTEM

By

Nicholas Efstathiou

Project Report

Submitted to

the Department of Mechanical Engineering of the Higher Technical Institute Nicosia Cyprus

in partial fulfilment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1993

2191

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Mr P. Demetriou lecturer in Mechanical Engineering, at H.T.I. for his assistance and guidance offered to me in carrying out the presented diploma project.

I also wish to thank Mr Neocleous for his help offered to me in designing the gears, and Mr Constantinos Charalambous for providing me useful books and information about this project.

ABSTRACT

The objectives of this project are:

- 1. To present appropriate design procedures for the design of gear train systems of various capacities.
- 2. To develop flowcharts showing the input data, the sequence of the design procedures and output forms.
- 3. To write, design and test the appropriate software.
- 4. To investigate the possibility of connecting the software with AutoCAD.

In the first Chapter reference is made to the capabilities of the AutoCAD system concerning drawing and designing of gears.

In the second Chapter reference is made to gear parameters and specifications, materials and manufacturing methods and design equations.

Chapter three is a user manual which will enable the user to operate the program and also contains flowcharts that indicate the course of the program. CONTENTS

Page

ACKNOWLEDGEMENTS			1		
ABSTRACT	2		2		
CHAPTER	1:	INTRODUCTION			
		About CAD	3	-	13
		Samples of 2-dimensional and			
		3-dimensional drawings	14	-	17
CHAPTER	2:	GEAR INFORMATION			
		Design of gears	18		
		Terminology	19	*****	20
		Geometry and Kinematics	20	1000	21
		The design of the involute curve	22		
		Stress analysis of gear teeth	22	4000E	25
		Gear tooth failure	25	400	26
		Materials and gear manufacturing			
		methods	26	-	27
CHAPTER	3:	GEAR TRAINS			
		Meshing of gears	28		
		Gear train ratios	28	weralda	31
CHAPTER	4:	USER'S MANUAL			
		Loading	32		
		How to draw a gear	32		33
		How to draw a tooth	33		
		How to draw a gear train	33		
		How to display the parameters	33	-	34
		How to apply the design formula	34		
		Exiting to command prompt	34		
		Explanation of all the factors			
		appearing in the formula	34	6115	36
		Tables	37	-	39
CHAPTER	5:	CONCLUSION	40		

·

41