

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING AND⁷ HOT WATER SUPPLY FOR A CLINIC

by

DEMETRIOU DEMETRIOS (M/761)

JUNE 1996

PROJECT NO GHER HW:CAL 2602 TUTE

DESIGN OF A CENTRAL HEATING AND HOT WATER SUPPLY SYSTEM OF A CLINIC

ΒY

DEMETRIOU DEMETRIOS

PROJECT REPORT

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING OF THE HIGHER TECHNICAL INSTITUTE

NICOSIA CYPRUS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DIPLOMA OF TECHNICIAN ENGINEER IN MECHANICAL ENGINEERING

JUNE 1996

PROJECT NO HCHER TROHN CAL 2602 STITUTE

This project dedicated to my parents who have offered me so much

CONTENTS

Pages

ACKNOWLEDGEMENT

SUMMARY

INTRODUCTION

CHAP	TER 1: ESTIMATION OF HEAT LOSSES.		1
1.1	INTRODUCTION		1
1.2	HEAT LOSS THROUGH STRUCTURE		1
	1.2.1 Structure of Fabric losses		1
	1.2.2 Infiltration or Ventilation Losses		3
1.3	FACTORS AFFECTING THE HEAT REQUIREMENTS.	•	4
1.4	OVERALL HEAT TRANSMITTANCE COEFFICIENT.		5
1.5	ESTIMATION OF U-VALUES OF DIFFERENT STRUCTU	RES	6
	1.5.1 Appendices (Notes)		6
1.6	U-VALUE ESTIMATION	•	7
	1.6.1 Floor of Ground	•	7
	1.6.2 Internal Floor and Ceiling		8
	1.6.3 Roof at 1st Floor.		9
	1.6.4 External North and East Wall.		9
	1.6.5 External West Wall.		10
	1.6.6 External South Wall.		11
	1.6.7 Internal Partition Wall.		12
	1.6.8 Wooden Doors		13
1.7	U - Values Tables		14
1.8	ASSUMPTIONS MADE FOR THE		
	CALCULATION OF HEATING LOADS.		15
1.9	CALCULATIONS OF THE HEATING LDS	•	15
1.10	CALCULATIONOF THE HEAT LOSSES		16

CHAPTER 2:SELECTION OF THE

	SYSTEM FOR THE SPACE HEATING.		. 38.
2.1	INTRODUCTION		. 38
2.2	AIR HANDLING UNIT SYSTEMS.		. 38
2.3	SELECTION OF THE HEATING METHOD.		. 40
2.4	SELECTION OF THE METHOD OF44		
	HOT WATER CIRCULATION		. 44
	2.4.1 Non-Mechanical or Gravity System.		. 45
	2.4.2 Forced or Accelerated Circulation.		. 46

2.5	SELECTION OF THE TYPE OF CIRCUIT.				46
	2.5.1 One - Pipe System				46
	2.5.2 Two - Pipe System			•	47
2.6	RADIATOR SELECTION				49
	2.6.1 Design water temperature	e.			50
	2.6.2 Safety factor				52
	2.6.3 Conversion Factor				52
	2.6.4 Procedure of selecting the radiators.				52
	2.6.5 Tables of the selected radiators.				53
2.7	PIPE SIZING				55
	2.7.1 Pipe arrangement considerations				56
	2.7.2 Procedure for sizing the pipe-work.				56
	2.7.3 Pipe sizing tables.				57
	- Laborate II				
CHAI	PTER 3: HOT AND COLD WATER SERVICES			•	60
3.1	INTRODUCTION	•			60
3.2	TYPERS OF WATER HEATING	•			60
3.3	SELECTION OF THE HOT WATER SUPPLY SYST	ΈM			62
3.4	INDIRECT HOT WATER SYSTEM COMBINED				
	WITH SPACE HEATING		. ,		65
3.5	PIPE ARRANGEMENT CONSIDERATIONS				66
3.6	DETERMINATION OF THE HOT WATER				
	CYLINDER'S CAPACITY				66
3.7	DETERMINATION OF BOILER'S POWER.				67
3.8	SIZING OF THE PRIMARY CIRQUIT				68
	3.8.1 Procedure for sizing the primary circuit.				68
	3.8.2 Sizing of the return pipes.				70
3.9	SIZING OF SECONDARY CIRCUIT.				70
CHAI	PTER 4: EQUIPMENT SIZING AND SELECTION.				74
4.1	INTRODUCTION				74
4.2	BOILER SIZING.				74
	4.2.1 Boiler selection				76
4.3	BURNER SIZING				78
	4.3.1 Burner selection.				78
4.4	EXPANSION VESSEL SIZING.			÷	79
	4.4.1 Expansion vessel selection.			•	82
4.5	CHIMNEY SIZING	•	•	•	83
4.6	FUEL OIL TANK SIZING	•		•	86
	4 6 1 Fuel oil tank selection			•	Q7
47	PI IMPS	•	-	•	0/
-1.7	471 Pumpe positioning	·		•	00
	-, $-$, $-$, $-$, $-$, $-$, $-$, $-$,	•			ðð

	4.7.2	Central Heating System P	umps Si	izing.	•		. 90
	4.7.3	Pumps Sizing Procedure.		•	•		. 91
	4.7.4	Central Heating System P	umps S	election	194 .		. 94
	4.7.5	Sizing and selection of the	e hot an	d cold			
		water supply system pum	ps.				. 96
4.8	RADI	ATORS SELECTION.					. 97
4.9	HOT	WATER CYLINDERS' C	OIL SIZ	ZING.			. 97
4.10	COPP	ER TUBE SELECTION.					.100
4.11	INSU	LATION SELECTION.	•	•			.101
4.12	VAL	ÆS			•		.101
CHAF	PTER 5	: COST ANALYSIS		•	•		.103

CONCLUSSIONS

APPENDICES

DRAWINGS

REFERENCES

Acknolgement

I would first like to express my appreciation to my project supervisor Mr. TH. Symeou, lecture at the H.T.I. for his valuable assistance and guidance in completing this project

I would also like to express my appreciation to everybody that helped me to accoblish this project.

SUMMARY

The aim of this project is to design a central heating and hot water supply system, for a clinic located in Nicosia.

Basically this project is divided into five chapters. The first chapter is about the estimation of heat requirements of a building, the second chapter involves the system of the space heating, whereas the third chapter describes the system for the hot water services. Furthermore the fourth chapter includes the sizing and selection of the equipment's, for various catalog, whicd are going to be used in this project. Finally in the last chapter the cost analysis of the whole design is described.

Demetriou Demetrios