HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING AND HOT WATER SERVICES TON A BLOCK OF FLATS

M/893

BY: CHARALAMEOUS CONSTANTIA

|UNE 2000

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING AND HOT WATER SERVICES FOR A BLOCK OF FLATS

By

CHARALAMBOUS CONSTANTIA (M/893)

JUNE 2000

DESIGN OF A CENTRAL HEATING AND HOT WATER SERVICES FOR A BLOCK OF FLATS

by

CHARALAMBOUS CONSTANTIA

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

In partial fulfillment of the requirements

of the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 2000

HIGHER PROJECT NO. TECHNICAL 3181

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	
SUMMARY	1
INTRODUCTION	2
CHAPTER 1: ESTIMATION OF HEAT LOSSES	4
1.1 INTRODUCTION	4
1.2 TYPES OF HEAT LOSSES	4
1.2.1 Fabric Losses 1.2.2 Infiltration Losses	5 7
1.3 OVERALL HEAT TRANSMITTANCE COEFFICIENT	8
1.3.1 U-Value Calculations	10
1.4 U-VALUE TABLES	16
1.5 ASSUMPTIONS MADE FOR THE CALCULATIONS OF HEATING LOADS	17
1.6 CALCULATIONS OF HEATING LOADS	19
1.6.1 Method of Calculations of Heating loads 1.6.2 Analytical Calculations of Heating losses	19 19
CHAPTER 2: SELECTION OF THE SYSTEM	
FOR THE SPACE HEATING	100
2.1 INTRODUCTION	100
2.2 SELECTION OF THE HEATING METHOD	100
2.3 SELECTION OF THE METHOD OF HOT WATER CIRCULATI	ON 104
2.3.1 Gravity circulation 2.3.2 Forced or Accelerated Circulation	104 106
2.4 SELECTION OF THE TYPE OF CIRCUIT	107
2.4.1 One-pipe System	107

2.4.2 Two-pipe System 2.4.2. (a) Normal Return System	107 108
2.4.2. (b) Reversed Return System	108
2.5 RADIATION SELECTION	110
2.5.1 Safety Factor 2.5.2 Procedure of Selecting of the Radiators 2.5.3 Selection Tables of Radiators	110 111 111
2.6 PIPE SIZING	122
2.6.1 Design Water Temperature 2.6.2 Pipe Arrangements Considerations 2.6.3 Pipe Sizing Procedure 2.6.4 Pipe Sizing Tables	122 123 124 125
CHAPTER 3: HOT WATER SERVICES	136
3.1 INTRODUCTION	136
3.2 TYPES OF WATER HEATING	136
3.2.1 Local heaters 3.2.2 Central system	136 138
3.3 SELECTION OF THE HOT WATER SUPPLY SYSTEM	139
3.4 PIPE ARRANGEMENT CONSIDERATIONS	142
3.5 DETARMINATION OF STORAGE ALLOWED	143
3.6 DETERMINATION OF BOILER'S POWER	145
3.7 SIZING OF THE PRIMARY CIRCUIT	146
3.7.1 Procedure for sizing the primary circuit 3.7.2 Sizing of the return pipes	146 147
3.8 SIZING OF SECONDARY CIRCUIT	148
CHAPTER 4: EQUIPMENT SIZING AND SELECTION	150
4.1 INTRODUCTION	150
4 2 ROTI ED	150

4.2.1 Boiler sizing	150
4.2.2 Boiler selection	152
4.3 BURNER	154
4.3.1 Burner sizing	154
4.3.2 Burner selection	155
4.4 EXPANSION VESSEL	155
4.4.1 Expansion vessel sizing	155
4.4.2 Expansion vessel selection	156
4.5 CHIMNEY	157
4.5.1 Chimney sizing	157
4.6 FUEL OIL TANK	160
4.6.1 Fuel oil tank selection	161
4.7 CALORIFIER	163
4.7.1 Calorifier selection	163
4.7.2 Calorifier coil sizing	164
4.8 PUMPS	167
4.8.1 Central heating pump sizing	167
4.8.2 Central heating pump selection	171
4.8.3 Hot water supply system pump sizing 4.8.4 Hot water supply system pump selection	172 173
4.9 RADIATORS	174
4.10 MANIFOLD	174
4.11 COPPER TUBE SELECTION	174
4.12 INSULATION SELECTION	174
4.13 VALVES	17

177

CONCLUSIONS

APPENDICES

DRAWINGS

REFERENCE

ACKNOWLEGMENT

I would like to express my appreciation to my project supervisor,

Mr. Th. Symeou, for his valuable assistance and guidance in executing this project.

I would also like to express my appreciation to my parents and especially to my friend Elena Adamou who offered me so much. And to everybody that helped me to accomplish this project.

SUMMARY

The objective of this project is to design a Central Heating and Hot Water Services for a Block of Flats consisting of five floors.

The architectural drawings were supplied by *S & P ARCHITECTURAL & DESIGN LTD*.

It must be mentioned that the ground, first and second floor consist of three flats and the others of one.

The whole work is divided into five chapters.

The first chapter is about the estimation of heat requirements of the Block of Flats.

The second chapter involves the system of space heating as the third describes the system for the hot water services.

Fourth chapter includes the sizing and selection of the equipment's, from various catalogues the equipment, which are going to be used in this project.

Finally, the last chapter includes the cost analysis, which is made for the whole design.

INTRODUCTION

The principal objective of the environmental engineer designing the services of an occupied space should be to enable the occupants of that space to pursue their normal activities in comfort.

In any subjective assessment of the whole environment, thermal, acoustic and visual factors all play a part.

So, the purpose of a heating system is to produce and maintain comfortable space concerned when the outside temperature has dropped below the comfort level.

In this project the heating system, which is designed, should excellent thermal comfort conditions at the internal space of all flats. To achieve this, a lot of factors should be taken into consideration, like:

- (1) The building construction optimum wall thickness materials used.
- (2) Inside and outside temperatures.
- (3) Building exposure (sheltered, normal severe).
- (4) Air changes, (infiltration losses).
- (5) Orientation etc.

By an accurate calculation of all heat losses and also by selecting the most appropriate equipments the design will succeed.

The space heating (in this project) is selected to be achieved by central system with common heat source. (Central heating system).

Central heating system, which results from the combination of a boiler and a burner, is circulated through a system of pipes and heat emitting appliances, thus heating the space where an appliance is present. Also the system is consisted of fittings, elbows, valves, unions, manifolds expansion tank, water circulators etc. All these are called equipment and they form a central heating system.

In addition to the above system, a hot water supply system will be introduced.

Finally a good designer is the one who:

- Designs a system, which is able to maintain the desired internal conditions.
- Manages to reduce the total cost as low as possible.

To achieve these two Basic requirements, the major factor in the design of the system should be the conservation of energy.