HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

OPTIMIZATION OF PARAMETERS AFFECTING LATHE CUTTING PROCESS A CASE OF DESIGN OF EXPERIMENTS (DOE)

> by PYROS ANDREAS (M/723)

> > JUNE 1995

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

OPTIMIZATION OF PARAMETERS AFFECTING LATHE CUTTING PROCESS : A CASE OF DOE

Student: Pyros Andreas (3M1) Supervisor: Dr. A. Stassis External Examiner: Dr. G. Moniatis Project Number: M/723

HIGHER	PROJECT NO
TECHNICAL	01100
INSTITUTE	2481

Dedicated to my parents and family

OPTIMIZATION OF PARAMETERS AFFECTING LATHE CUTTING PROCESS : A CASE OF DOE

by

PYROS ANDREAS

Project Report

Submitted to the Department of Mechanical Engineering of the Higher Technical Institute

Nicosia, Cyprus

In partial fulfilment of the requirements for the Diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1995

ACKNOWLEDGEMENTS

I would like to express my deep thanks to my project supervisor Dr. A C Stassis, Lecturer in Production Engineering Department of H.T.I, for his valuable guidance and assistance given throughout the project period.

My thanks are also expressed to Mr Ioannis I. Angeli, Laboratory Assistance, 1st Class in the Advance Machine Laboratory of H.T.I, for his guidance and useful help offered to me during my working period in the laboratory and workshops.

Finally, I appreciate the help given me by the NEMITSAS INDUSTRIES LTD which supplied the materials required for the experiments.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS

CONTENTS

SUMMARY

INTRODUCTION

CHA	CHAPTER 1 - SINGLE POINT CUTTING TOOL GEOMETRY		1
1.1	Introduc	ction	1
1.2	Types of single point tools		1
1.3	3 Tool geometry		3
	1.3.1	Back rake angle	3
	1.3.2	Front relief or clearance angle	4
	1.3.3	Side relief or clearance angle	4
	1.3.4	Side rake angle	4
	1.3.5	Side cutting-edge angle	5
	1.3.6	End cutting-edge angle	5
	1.3.7	Nose radius	5
	1.3.8	Entering angle	6
	1.3.9	Tool lip angle	6
	1.3.10	Cutting angle	6

1.4Metal cutting action and chip formation9

1.5 Types of chip

	1.5.1	Discontinuous chip	10
	1.5.2	Continuous chip without a built up edge	10
	1.5.3	Continuous chip with a built up edge	11
1.6	Chip-bre	aker	14
1.7	Cutting f	orces	16
1.8	Heat gen	neration	16
1.9	Machina	bility	18
1.10	Tool hole	ders	18
1.11	"Throw-a	away" tool tips	19
CHAR	<u>PTER 2</u> - C	UTTING TOOL MATERIALS AND CUTTING FLUIDS	22
2.1	Introduc	tion	22
2.2	High car	bon steel	22
2.3	High spe	ed steel	23
2.4	Cemente	ed carbide	23
2.5	Ceramic	S	23
2.6	Non-ferre	ous alloys	24
2.7	Diamond	Is	24
2.8	Cutting f	luids	25
CHAR	<u> PTER 3</u> - T	OOL WEAR AND TOOL LIFE	26
3.1	Introd	uction	26
3.2	Tool w	vear	26
	3.2.1	Flank or land wear	26
	3.2.2	Wear due to build-up-edge	27
	3.2.3	Crater wear	27

9

	3.2.4	Notching at the depth of cut line	27
	3.2.5	Pullouts	27
	3.2.6	Thermal cracking	28
	3.2.2	Edge deformation	28
	3.2.8	Cutting edge chipping	28
3.3	Tool life		30
	3.3.1	Economical tool life	30
CUADT			20
CHAPI	<u>ER 4</u> - SUR	FACE TEXTURE	32
A 1	Introduct	ion	32
- T . I	miouuoi		02
	4.1.1 Fa	tigue life	32
	4.1.2 Be	aring properties	32
	4.1.3 We	ear	33
4.2	Methods	of measuring surface finish	33
	4.2.1	Stylus probe instruments	33
4.3	Geometry	y of surfaces	34
4.4	Paramete	ers	36
CHAPT	<u>'ER 5</u> - OPT	IMIZATION TECHNIQUES AND INTRODUCTION TO	
	TAC	SUCHI METHODS	37
5.1	Introduct	tion	37

5.2	Taguo	chi philosophy - Quality and the loss function	37
5.3	Taguo	chi method compared to traditional method	39
5.4	Objec	tive of Taguchi	40
<u>CHAP</u>	<u>TER 6</u> - S	SELECTION OF PARAMETERS FOR OPTIMIZATION	41
6.1	Introd	luction	41
	6.1.1	Cause and effect diagram	4 2 .a
6.2	Select	tion of parameters	43
	6.2.1	Cutting speed	43
	6.2.2	Feed	44
	6.2.3	Depth of cut	44
	6.2.4	Clearance angle	45
	6.2.5	Setting angle	47
	6.2.6	Type of cutting tool	49
	6.2.7	Cutting fluid	49
CHAP	<u>TER 7</u> - D	DESIGN OF EXPERIMENTS PROCEDURE	50
7.1	Introd	uction	50
7.2	Prepa	ration of the experiments	53
7.3	Proce	dure followed to obtain the optimum solution	54
CHAP	<u>TER 8</u> - C	CONCLUSIONS	67
REFE	RENCES		69
APPE	NDICES		
4442	an 1 1 1% 1		

TABLE OF FIGURES

		Fage
Figure 1.1	Turning Tool elements	2
Figure 1.3 a-e	Nomeclature of single - point tool	7,8
Figure 1.3.f	Orientation of inserts in Toolholder pockets	8
Figure 1.4.a-b	Metal cutting action	12
Figure 1.5	Types of chip formation	12
Figure 1.5.A-C	Discontinuous, continuous without a BUE and	
	continuous with a BUE chips.	13
Figure 1.6.	Chip control	15
Figure 1.7	Cutting Forces	17
Figure 1.8	Heat generation	17
Figure 1.10.A-0	C Toolholders	20
Figure 1.11	POSITIVE or NEGATIVE cutting rake angles	21
Figure 3.2	Types of tool wear	29
Figure 3.3.	Economical tool life	31
Figure 4.3	Lay, roughness and waviness	35
Figure 4.4.	Centre line average method (Ra)	35
Figure 5	Taguchi Philosophy	38
Figure 6	Cause and effect diagram	41.a
Figure 6.1	Elements of the cutting process in turning	46
Figure 6.2	The clearance angle	46
Figure 6.3a	The setting angle	48
Figure 6.3b	Tool style	48
Table 7.1	Common orthogonal arrays	51
Table 7.2.1	Factors and levels for optimization	52
Table 7.2.2	The L ₈ orthogonal array	52
Table 7.3	The Experiments	55
Figure 1 T	he eight components on which the experiments were	
p	erformed	56
Figure 2	Recording the surface finish at Form Talysurf Instrument	57

Page:

Figure 3	The Form Talysurf instrument for surface		
	texture analysis at HTI	57	
Table 7.4	Calculation of the Average surface finish Ra	58	
Table 7.5	Response Table	60	
Table 7.6	Confirmation Run Tests	63	
Graph 7	Graph Out Responses	61.a	

SUMMARY

This project deals with the optimization of the important parameter in a metal cutting process employing lathe single point cutting tool. The purpose is to change and combine the most important factors such as the cutting speed, the feed rate, depth of cut lubrication etc. and carry out an investigation into the best combination of these factors in order to find the optimum settings that give the best surface finish.

First of all a study was made about single point cutting tools theory, the different cutting tool materials and cutting fluids, the tool wear and tool life and about the surface texture.

A number of experiments was performed at machine shop of the HTI and the shafts used for the experiments and for surface finish measurements (made of Gray cast iron), were offered by a specific industry which uses the particular material in production.

The Taguchi method in Design of Experiments (DOE) was studied extensively and using this method the optimum solution was achieved. The optimum solution was later confirmed by executing another two experiments and conclusions for the whole project were made.