SOFT START - SOFT STOP OF AN INDUCTION MOTOR

E-757

Project Report Submited by

CONSTANTINOU COSTAKIS

of 3E2

In part satisfaction of the award of

Diploma of Technician Engineer

in

Electrical Engineering

<u>of the</u>

Higher Technical Institute

<u>Nicosia, Cyprus</u>

Project supervisor: Mr. D.John

Lecturer in

Electrical Engineering H.T.I.

JUNE 1991

1844

SUMMARY

Advanced motor control engineering introduces modern, new technology for controlling which employs methods and techniques having nothing to do with relays and generally with any mechanical logic devices, any more. Instead, power electronic devices are used. These are controlled by analoque or digital ccts which either programmable or one fuction ccts. If programmable, personal computers perform their programing.

The scope of the present project is to introduce, analyse and apply amethod for the starting of 3-phase induction motors utilizing power electronics. The method is known as "Soft starting of an induction motor".

The primary emphasis in this project is given in designing and developing the control cct used for driving the power cct. Together with the representation of the varius parts of the control cct, a detailed analysis of those parts is provided.

The soft starting of an induction motor, is an advanced method, which comes to substitute the previous methods where mechanical starters and relays were used. The new method is cheaper, its construction takes less space and it can provide protection of the motor, such as phase failure. Also, the torque of the rotor and hence of the shaft is increased smoothighly, eliminating sudden movements and large surges of current in the stator windings are avoided.

CONTENTS

ACKNOWLEDGEMENTS

SUMMARY

INTRODUCTION

PART 1	1
1.1 About the induction motor	1
1.2 a) Introduction to phase control	7
b) Analysis of phase control	9
1.3 Soft start of induction motor, incorporating phase	
control	9
1.4 Comparison of phase control with other methods of	
starting	11
PART 2 (Design of the soft-start soft-stop of the induction	
motor)	14
2.1 Circuit represantation	14
2.2 Power circuit	15
2.3 Control circuit	15
i) Power supply circuit	15
ii) Relaxation oscillator	15
iii) Driving circuit	17
iv) Ramp genarator	17
v) Phase failure detector	18
2.4 Printed circuit board	18
PART 3 (Costing and applications)	20
3.1 Costing	20
3.2 Applications	23
PART 4 (Conclusions)	25
4.1 Advandages-disadvantages	25
4.2 Conclusion	26
PART 5 (References)	28

PART 6 (Appendices)	30
6.1 Appendix I (Theory)	31
(a) About operational amplifiers	31
(b) About thyristors	50
6.2 Appendix II (Figures)	61
6.3 Appendix III (Data sheets)	