COMPUTER AIDED DESIGN OFOR HELICAL AND LEAF SPRINGS

PROJECT REPORT SUBMITTED BY: LAZAROU ANTONIS

in part satisfaction of the award of Diploma of Technician Engineer in Mechanical Engineering of the Higher Technical Institute CYPRUS

Project Supervisor: Mr Vassilios Messaritis Lecturer in Mechanical Eng. H.T.I.

External Assessor : Mr Georgiou Nicholas

Type of Project : Individual

HIO	June	1989
TECHNICAL INSTITUTE 1545	7	

ABSTRACT

This project deals with the Computer Aided Design for Helical and Leaf Springs. It is divided into two parts.

Part A consists of 6 chapters where the mathematical analysis for the design of Helical (extension, compression, torsion) and Leaf Springs is presented.

- <u>Chapter 1</u>: Introduction. Uses and classification of the Springs.
- Chapter 2: Presents the analysis for the design of Helical Compression and Extension springs. Stresses in Helical Spring Deflection, Fatigue loading, Critical frequency, Buckling and other causes of spring failure and finally Energy Storage Capacity are included.
- <u>Chapter 3</u>: Presents the analysis for the design of Helical Torsion Springs. (Stresses, Deflection and failure of the spring).

Chapter 4: Deals with the combination of helical springs.

- <u>Chapter 5</u>: Presents the analysis for the design of Leaf Springs.
- <u>Chapter 6</u>: Deals with the Spring materials and mechanical properties of both Helical and Leaf Springs Reference is made to Heat Treatment of Springs and Tolerances.

Part B consist of 2 Chapters where the computer programs are presented.

CONTENTS

Acknowle	edgmen	ts	
Abstract	t		i
PART A	-	MATHEMATICAL ANALYSIS FOR THE	
		DESIGN OF HELICAL AND LEAF-SPRINGS	
CHAPTER	1 –	INTRODUCTION	1
	1.1	Use of the springs	1
	1.2	Classification of the springs	2
CHAPTER	2 -	MATHEMATICAL ANALYSIS FOR THE	
		DESIGN OF HELICAL SPRINGS	
		(COMPRESSION-EXTENSION)	7
	2.1	Stresses in Helical Springs	9
	2.2	Deflection of Helical Springs	17
	2.3	Compression Springs	22
		2.3.1 Some terminology used	22
	1	2.3.2 Number of active coils	27
	2.4	Extension Springs	28
		2.4.1 Types of Ends	28
		2.4.2 Initial tension in Extension	
		Springs	33
		2.4.3 Dimensioning of Extension	
		Springs	34
	2.5	Fatigue loading	35
	2.6	Critical Frequency in Helical Springs	37
	2.7	Buckling	39
	2.8	Energy Storage Capacity	42
CHAPTER	3 –	MATHEMATICAL ANALYSIS FOR THE DESIGN	
		OF HELICAL TORSION SPRINGS	43
	3.1	Stresses in Helical Torsion Springs	46
	3.2	Deflection of Torsion Springs	48
	3.3	Failure of helical Torsion Springs	49

CHAPTER	5 –	COMBINATION OF HELICAL SPRINGS	51
	5.1	Symmetric Semi-Elliptic leaf-Springs	55
	5.2	Equalised Stress in Spring leaves	60
	5.3	Design of leaf-springs	63
CHAPTER	6 –	SPRING MATERIALS AND MECHANICAL	
		PROPERTIES	69
	6.1	Helical Spring Materials	69
	6.2	Protective Coatings	79
	6.3	Materials for Leaf-Springs	79
	6.4	Heat Treatment of Springs	80
	6.5	Tolerances	81
PART B	– COI	MPUTER AIDED DESIGN	
CHAPTER	7 –	EXPLANATION OF THE COMPUTER PROGRAMS	
		FLOWCHARTS	82
	7.1	INTRODUCTION	82
		7.1.1 The CAD systems	82
		7.1.2 Benefits obtained from CAD	83
	7.2	Programming Language Selected	83
	7.3	Explanatory information to the	
		operator	85
		7.3.1 Design of a Compression Spring	85
		7.3.2 Design of an Extension Spring	88
		7.3.3 Design of Helical Torsion	
		Springs	89
		7.3.4 Design of a Leaf Spring	91
	7.4	Flowcharts	93
		7.4.1 Flowchart No. 1 - Helical	
		Springs	94
		7.4.2 Flowchart No. 2 - Leaf-Springs	98
	_		
CHAPTER	8 COI	MPUTER PROGRAMS	101
	-	Helical Springs	101
		Leaf Springs	114

- Numerical Examples

CONCLUSIONS

APPENDIX

REFERENCES

and a second A difficult second se

$(1,2,2) = \{1,2,3,\dots,N_{n-1},\dots,N_{n-$

118