HIGHER TECHNICAL INSTITUTE NICOSIA - CYPRUS CIVIL ENGINEERING COURSE

DIPLOMA PROJECT

STRUCTURAL STEEL DESIGN OF A STEEL ARCHED BRIDGE

C/1021

BY

KKOLAS PETROS

JUNE 2007

PREFACE

This Diploma Project book was completed under the overall research into many books related with the topic approached. Books were borrowed from Higher Technical Institute Library and University of Cyprus Library. The internet was used in order to gather useful information about the bridges in general. Furthermore internet helped into the better understanding of the aim by looking into pictures from bridges all around the world.

In this Diploma Project book the reader will find the designing details of an arched bridge with Nielsen type.

In Chapter 1 is the project introduction with general thoughts about steel design in general.

In Chapter 2 there are 3 verification examples with simply examples from the steel design course. They were solved in two ways, one by hand and one by the use of STAAD.*pro* engineering software. Their results are compared and commented.

In Chapter 3 is the main chapter of the project. The design and all the procedure followed is explained. The output code from STAAD.pro is also showed and drawings as well.

In Chapter 4 main conclusions in concerned of the project are stated.

i

Also at the end of the book there are appendices used during the project and bibliography.

LIST OF CONTENTS

i

ii

1

PREFACE – INTRODUCTION ACKNOWLEDGEMENT

CHAPTER 1 – INTRODUCTION

1.1 Aim and Objective

CHAPTER 2 – VERIFICATION PROBLEMS

2.1 Verification example No.1 – Support reactions of a cantilever	
2.1.1 Support reactions of a cantilever	3
2.1.2 Solution of the verification problem	4
2.1.3 Output from STAAD.pro 2005	5
2.2 Verification example No.2 – Analysis of an axially	
loaded column	
2.2.1 Analysis of an axially loaded column	16
2.2.2 Solution of the verification problem	17
2.2.3 Output from STAAD.pro 2005	18
2.3 Verification example No.3 – Designing in STAAD.pro	
a Truss roof	
2.2.1 Designing in STAAD.pro 2005 a Truss Roof	21
2.2.2 Output from STAAD.pro 2005	22

CHAPTER 3 – THE ARCHED BRIDGE

3.1 About the arched bridge	
3.1.1 General	29
3.1.2 The design	30
3.2 Loading and calculations	
3.2.1 Deck Loads – Dead loads	31
3.2.2 Live Loads – Traffic Loading	32
3.2.3 Wind Loads	33
3.2.4. Calculations	35
3.3 The output from STAAD.pro	
3.3.1 First design of arched bridge	37
3.3.2 Second design of arched bridge	56

CHAPTER 4 – CONCLUSIONS

4.1 General Conclusions for the project

APPENDICES BIBLIOGRAPHY ATTACHED MATERIAL INSTRUCTIONS