COMPUTER AIDED DESIGN

OF WELDED JOINTS

By

Chambi Christakis

Project Report

submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia/Cyprus

In partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1994

HICHER	PROJECT NO
TACHACIL	20.00
STUTE	2347

ACKNOWLEDGMENT

I would like to thank my supervisors Mr. P.Demetriou and Mr. P.Tramountanellis and everybody else who gave me their help and support.

1. INTRODUCTION

1.1 WELDED JOINTS

Welded joints are permanent joints obtained by localised heating and are based on molecular attraction.Welding is performed by heating the metal to the molten state(fusion arc welding,electroslag welding,e.t.c.)or to a paste-like(plastic)state but with the application of mechanical force(resistance welding).

Welded joints are the most advanced type of permanent joints because the properties of the welded component and the weldment are closest to those of a solid member.

Furthermore very complicated members can be fabricated by welding The strength of welded joints subject to static or impact loads reaches that of the base metal.

All stractural steels, including high-alloy grades, nonferrous alloys and plastics can be efficiently welded.

Robots have been very effectively used in welding processes, reducing the cost and improving quality.

Semiautomatic welding is applied where the seams are short and located at various random places on the weldment.

Hand arc welding is employed for a small volume of welding work.

1.2 VISUAL BASIC PROGRAMMING

The earliest programming languages were designed in the 1950s and were primarily for solving complex mathematical problems. But people realised that computer technology could be useful for more than math and in response, a language called BASIC was developed early in the 1960s.A whole generation of programmers used BASIC to write an amazing variety of programs. Over the years, this programming language was enhanced and developed but a problem remains usolved.

1

CONTENTS

CHAPTER 1. INTRODUCTION

4	Welded	Joints	1
1.2	Visual	Basic Programming	1

CHAPTER 2. WELDED JOINTS

2.1	Welding techniques	3
2.1.1	Arc techniques	3
2.1.2	Electroslag welding	3
2.1.3	Resistance welding	4
2.1.4	Other techniques	5
2.2	Oxide formation	6
2.3	Welding symbols	7
2.4	Types of welds	9
2.4.1	Butt and Fillet welds	10
2.5	Torsion in welded joints	15
2.6	Bending in welded joints	17
2.7	The strength of welded joints	20
2.8	Advantages and Disadvantages	22

CHAPTER 3. VISUAL BASIC PROGRAMMING

3.1	Installing Visual Basic	22
3.2	Starting Visual Basic	22
3.3	The main windows of Visual Basic	23
3.3.1	The form window	23
3.3.2	Properties window	24
3.3.3	Controls	24
3.3.4	Toolbox	24
3.3.5	Toolbar	25
3.3.6	The code window	25

3.3.7	The Project	window	27
3.3.8	Saving work	on disk	27
3.4	Creating an	EXE program	27

CHAPTER 4. USER'S MANUAL

4.1	Installation of software	30
4.1.1	Installation to Visual Basic	30
4.1.2	Installation to File Manager	30
4.2	Starting the program	32
4.2.1	The main menu	32
4.2.2	The Tables	32
4.2.3	The calculations window	32
4.2.4	End of program	33

CHAPTER 5. FLOWCHARTS

5.1	Introducti	lon		38
5.2	Flowchart	symbols		38
	Flowchart	explaining	main menu	40
	Flowchart	explaining	tables	41
	Flowchart	explaining	Shear calculations	42
	Flowchart	explaining	Torsion calculations	43
	Flowchart	explaining	Bending calculations	44
	Flowchart	explaining	Bending+Torsion calculations	45

CHAPTER 6. TESTING OF SOFTWARE

6.1 Test according to Torsion loading	46
CHAPTER 7. CONCLUSIONS	48
APPENDIX A. LISTING OF PROGRAM	49
APPENDIX B. MATERIAL PROPERTIES	88
REFERENCES	89