DESIGN OF CONCRETE OF GRADE 40

USING ADMIXTURES

by

Maria Phylaktou

and

Thalia Ioannou

Project Report

Submitted to

the Department of Civil Engineering

of the Higher Technical Institute

Nicosia - Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

JUNE 1993

2093

TECHNIC/ I

ACKNOWLEDGEMENTS

We would like to express our sincere appreciation to Mr. A. Kkolos, our project supervisor, for giving all the necessary guidance.

Further we would like to thank Mr. M. Agathogleous, Mr. N. Hadjigeorgiou and Mr. G. Alexandrou, our lab-assistants who gave us every assistance in our experimental work.

We would like to thank Miss Chrystalla Pavlou who has undertaken the responsibility of carrying through all the typing work of the project as well as all the staff of PC's Copy Center.

Finally, through this occasion thanks are expressed to those who have given us all the necessary guidance and help through out our three years of studies at the Higher Technical Institute.

SUMMARY

This project is an experimental one and the main purpose of it, is to design Concrete of Grade 40 using Admixtures and local aggregates and cement. In order to achieve this, some trial mixes with various values of water/cement ratio are performed, following the design Mix Method of Concrete. Mix proportions are combined with a suitable quantity of super plasticizer.

The project begins with a reference to the materials using in concrete (aggregates, cement, water). Aggregates is the section mainly discussed, especially their influence on concrete strength.

In the second chapter the properties of concrete are discussed. Strength workability and durability are explained analytically and their importance to concrete technology is mentioned.

Chapter 3 referred to the various types of admixtures especially to superplasticizers indicating their effects on concrete properties. In addition the applications of these chemical compounds are mentioned.

Chapter 4 explains Mix Design method and the relative data, graphs and tables are provided.

In the experimental part the designing of the mixes and the necessary adjustments which are performed to this project are provided. Also the procedures for making and curing concrete cubes as well as the compressive tests are written. Moreover the apparatus are explained and photographs provided.

Results are provided in tables are comments are written about these results. Finally conclusions are written and the main points of the project mentioned.

CONTENTS

	Pages
ACKNOWLEDGEMENTS	
SUMMARY	
INTRODUCTION	
CHAPTER 1: CONCRETE MATERIALS	
1.1 CEMENTS	1
1.1.0 General	1
1.1.1 Chemical Composition of Portland Cement	2
1.1.2 Cement's storage and packing	4
1.1.3 Hydration of Cement	7
1.1.4 Heat of Hydration	8
1.1.5 Setting	9
1.1.6 Hardening	10
1.1.7 Fineness of Cement	11
1.1.8 Soundness	11
1.1.9 Strength of Cement	11
1.2 AGGREGATES	
1.2.0 Introduction	13
1.2.1 General Classification of Aggregate	13
1.2.2 Crushing Plant	15
1.2.3 General Requirements for Aggregates	24
1.2.4 Properties of Aggregates	26
1.2.4.1 Particle shape and texture	26
1.2.4.2 Bond of Aggregate	29
1.2.4.3 Specific Gravity	29
1.2.4.4 Bulk Density	30
1.2.4.5 Porosity and Absorption of Aggregates	31
1.2.4.6 Moisture Content of Aggregate	33
1.2.4.7 Bulking of Sand	34
1.2.5 Grading and sieve Analysis	35
1.2.5.1 General	35
1.2.5.2 Grading Curves	35
1.2.5.3 Grading Requirements	37
1.2.5.4 Grading of Fine and Coarse Aggregates	40

1.2.5.5 Experimental test on the determination	
of particle size distribution by	
sieving of Coarse and Fine aggregates	46
1.2.6 Maximum Aggregate size	53
1.3 WATER	54
CHAPTER 2: PROPERTIES OF CONCRETE	
2.0 Introduction	56
2.1 STRENGTH OF CONCRETE	56
2.1.0 Introduction	56
2.1.1 Water/Cement Ratio and Degree of Compaction	57
2.1.2 Gel/Space Ratio	59
2.1.3 Nature of Strength of Concrete	60
2.1.3.1 Strength in tension	60
2.1.3.2 Cracking and Failure in Compression	62
2.1.4 Influence of Coarse Aggregate on Strength	63
2.1.5 Influence of Richness of the Mix on Strength	64
2.1.6 Effect of Age on Strength of Concrete	66
2.1.7 Curing of Concrete	68
2.1.8 Influence of Temperature on Strength of Concrete	68
2.2 WORKABILITY	
2.2.0 Introduction	71
2.2.1 Definition of Workability	71
2.2.2 Factors Affecting Workability	72
2.2.3 Measurement of Workability	73
2.2.4 Effect of Time and Temperature on Workability	80
2.2.5 Segregarion	81
2.2.6 Bleeding	83

2.2.7 Mixing of Concrete

2.3 DURABILITY OF CONCRETE2.3.0 Introduction2.3.1 Permeability of Concrete2.3.2 Chemical Attack of Concrete2.3.3 Effects of Frost on Fresh Concrete

2.3.4 Frost Attack of Hardened Concrete	88
2.3.5 Resistance to Fire	89
<u>CHAPTER 3</u> : ADMIXTURES	
3.1.0 General	90
3.1.1 Accelerators	90
3.1.2 Air-entraining Admixtures	92
3.1.3 Water-reduces/Retarders	94
3.1.4 Superplasticizers	96
3.2.0 Methods of using superplasticizers	100
3.2.1 Manufacturers recommendations about FL0-S1	
used in Experimental part	101
3.3.0 Applications of admixtures	102
3.3.1 Water-Reducing and Retarding Admixtures	102
3.3.1.1 Ready-mixed concrete	102
3.3.1.2 High Strength concrete	104
3.3.1.3 Large porous and retarded concrete	104
3.3.1.4 Marine Structures	105
3.3.1.5 Pumping	108
3.3.1.6 Underwater concrete	108
3.3.3 Concreting in hot weather conditions	110
CHAPTER 4: MIX DESIGN	
4.1.0 Introduction	112
4.2.0 Cost	112
4.3.0 Basic concepts	112
4.3.1 Strength margin	112
4.3.2 Measurement of workability	113
4.3.3 Free-water	113
4.3.4 Types of aggregate	113
4.3.5 Aggregate grading	114
4.3.6 Mix parameters	114
4.3.7 Durability	114
4.4.0 Background information for the mix design	115
4.4.1 The workability of concrete	115

4.4.2 The compressive strength of concrete	116
4.4.3 Variability of concrete strength during	
production	117
4.5.0 The mix design process	121
4.5.1 Flow chart of procedures	121
4.5.2 Trial mixes	128
4.5.3 Adjustment to mix proportions	132
CHAPTER 5: EXPERIMENTAL PART	
PART I: PREPARATION OF TRIAL MIXES AND ADJUSTMENTS	
5.1.0 Objectives	135
5.1.1 Presentation of trial mixes	136
PART II: EXPERIMENTS FOR TRIAL MIXES	
5.2.1 Making and curing tests cubes in the laboratory	152
5.2.1.0 Objectives	152
5.2.1.1 Materials	152
5.2.1.2 Apparatus	152
5.2.1.3 Procedures for preparing Concrete cubes	160
5.2.2 Compressive strength of moulded cubes	166
5.2.2.0 Objectives	166
5.2.2.1 Apparatus	166
5.2.2 Procedure	167
PART II: RESULTS	
5.3.0 Type of failure	170
5.3.1 Tabulation of Results	170
5.3.2 Calculations	179
5.3.3 Graphs	180
5.5.5 Graphs	100
PART IV: CONCLUSIONS	
5.4.0 General	185
5.4.1 Comments on the trial mixes	185
5.4.2 Conclusions	189
REFERENCES	192