MEASUREMENT OF BLOOD FLOW USING THE BIO-IMPEDANCE METHOD

by Peter C. Eracleous

Project Report
Submitted to
the Department of Electrical Engineering
of the Higher Technical Institute
Nicosia, Cyprus
in partial fulfilment of the requirements
for the diploma of
TECHNICIAN ENGINEER

in

ELECTRICAL ENGINEERING

June 1990

ABSTRACT

The purpose of this project was to study the Non-Invasive Bio-impedance method for blood flow measurement and to design and construct a simplified circuit based on the above method; which would best utilize the theory and data presented.

The procedure followed was to outline the previous invasive methods of blood flow measurement and hence compare them to the Bio-impedance method. The theory and formulae related to the method as well as other information were mentioned to enable the reader to understand the subject more easily.

theoritical comply with the part a circuit TOwas constructed using simple electronics principles. This circuit was something like a model of the existing circuits in this field.

The results of the practical part were not satisfactory and they showed that the constructed circuit was not suitable. If any progress is to be made, this project should be continued.

The overall conclusions drawn are shown at the end of the project.

CONTENTS

<u>Page</u>

ACKNOWLEDGEMENTS			
ABSTRACT			
INTRODUCTION			
Blood	l Flow Measurement	1	
Histo	orical Approaches: Invasive methods	2	
CHAPTER 1	IMPEDANCE PLETHYSMOGRAPHY		
1.1	Introduction to Impedance Plethysmography	5	
1.2	History	8	
1.3	Theory - Formulae	14	
1.4	Calculation of Cardiac Output (Blood Flow)		
1.5	Theoritical Considerations on the accuracy		
. • •	of the method	18	
1.5.1	Influence of electrode position	19	
1.5.2	Influence of thoracic circumference	22	
1.5.3	Influence of the content of the thorax	24	
CHAPTER 2	CIRCUIT DESIGN & CALCULATIONS		
2.1	Circuit Suggestions	26	
2.2	Square Wave Oscillator	28	
2.3	Voltage -to- Current Convertor	31	
2.4	Amplifier	31	
2.5	Differentiator	33	
2.6	Electrodes		
2.6.1	Theory	34	
2.6.2	Type of Electrodes	35	
2.7	Suggestions for Future Work	36	
CHAPTER 3	CIRCUIT CONSTRUCTION AND TESTING		
3.1	Actual Circuit	39	
3.2	Components	40	
3.3	Safety Aspect	41	
3.4	Testing	43	

<u>Page</u>

CONCLUSIONS 44

REFERENCES

APPENDIX

A.1	The Structure and Operation of the Heart
A.2	The Heart Structure
A.3	Heart Operation and Blood Circulation