HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT COMPUTER AIDED DESIGN OF BOLTED JOINTS By PANAYIOTIS NICOLAOU (M/768)

JUNE 1996

COMPUTER AIDED DESIGN

OF BOLTED JOINTS

by

Panayiotis Nicolaou

M/768

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1996

HIGHER	PROJECT NO
TECHNICAL	0.000
INSTITUTE	2609

ACKNOWLEDGMENT

I would like to thank my supervisor Mr. P. Demetriou and everybody else who gave me their help and support.

DEDICATION

I would like to dedicate the following project, to my fiancee for her moral support.

CONTENTS

CHAPTER 1. INTRODUCTION

1.1	Bolted Design	1
1.2	Visual Basic Programming	2

.

CHAPTER 2. BOLTED JOINTS

2.1	Terminology	5
2.2	Standard Thread Profiles	7
2.3	Identification Codes	9
2.4	Tolerances and Allowances	11
2.5	The mechanics of Power Screws	13
2.6	Bolt strength	18
2.7	Bolted Joints loaded in shear	20
2.7.1	Bending of Bolt or Bolted member	20
2.7.2	Shear of Bolt	20
2.7.3	Tensile failure of member	21
2.7.4	Bearing Stress	22
2.7.5	Shear tear out/tensible tear out	22
2.8	Centroid of bolt groups	24
2.9	Eccentric loading	25
2.10	Advantages - Disadvantages	28

CHAPTER 3. VISUAL BASIC PROGRAMMING

3.1	Installing Visual Basic	29
3.2	Starting Visual Basic	30
3.3	The main Windows of Visual Basic	31
3.3.1	The form Window	32
3.3.2	Properties Window	32
3.3.3	Controls	33

3.3.4	Toolbox	3	3
3.3.5	Toolbar	3	35
3.3.6	The code Window	3	36
3.3.7	The Project Window	3	37
3.3.8	Saving Work on Disk	:	38
3.3.9	Saving your Project	з	39
3.4	Creating an EXE Program	4	40

CHAPTER 4. USER' MANUAL

4.1	Installation of software	42
4.1.1	Installation to Visual Basic	42
4.1.2	Installation to File Manager	42
4.2	Starting the program	43
4.2.1	The main menu	43
4.2.2	The Forms	44
4.2.3	Print Results	44
4.2.4	Exit Bolted Joints	44
4.2.5	Get Help	44

CHAPTER 5. FLOWCHARTS

5.1	Introduction	45
5.2	Flowchart symbols	45
5.2.1	Flowchart Explaining Main Menu	47
5.2.2	Flowchart Explaining Screw Threads	48
5.2.3	Flowchart Explaining Tension Connection	49
5.2.4	Flowchart Explaining Centroid of Bolt Group	50
5.2.5	Flowchart Explaining Shear of Bolts	51

CHAPTER 6. CONCLUSION	52
APPENDIX A. LISTING OF PROGRAM	53
APPENDIX B. MATERIAL PROPERTIES	69
REFERENCES	72

.

1. INTRODUCTION

1,1 BOLTED DESIGN

The several machine elements required in order to form a working machine frequently has to be connected together. In other cases it is advantageous to form a complicated machine element out of more than one component which have to be connected together to give the final element. Some reasons have been presented previously, such as producibility, components made out of dissimilar materials, serviceability with parts that have high wear rate. In most cases' joints has the purpose of carrying loads.

Since joint elements are used in a variety of cases they have been standardized to a very great extend.

A joint element, such as a bolt for example, can be used in a variety of tasks. The same bolt can be used in an automobile, in an aircraft engine or in a paper mill. On all occasions its purpose

is to carry a certain load in a certain mode. It is fact that an automobile sometimes consists of more than 10,000 parts, a machine tool might have up to 20,000 parts, a rolling mill might reach 1,000,000 parts.

Joints may be permanent or removable. The selection is based on the purpose and on the economy of the joint. Permanent connections cost less in general but they have the disadvantage that to disconnect the parts, the joints have to be destroyed and they cannot used again. On the other hand, permanent joints are safer especially in parts which sustain dynamic loads. Therefore, for permanent joints the main consideration is the strength. For separable joints permitting assembly and disassembly, additional security from accidental separation is necessary.

Permanent joints are held together either by forces of molecular cohesion, such as the welded joints, or by mechanical means as riveted and bolted joints.