DESIGN - CONSTRUCTION AND TESTING OF A MICROPROCESSOR CONTROLLED THREE-PHASE VARIABLE FREQUENCY POWER TRANSISTOR INVERTER

Project report Submitted by

ANTONIS ANTONIOU

In part satisfaction of the requirements of Diploma of Technician Engineer in Electrical Engineering Course of HIGHER TECHNICAL ISNTITUTE

Project Supervisor

: Mr. S. Hadjioannou

Lecturer in Electrical

Engineering Department

H.T.I.

External Assessor

: A. Yerocostas

JUNE 1989

DESIGN, CONSTRUCTION AND TESTING OF A
MICROPROCESSOR CONTROLLED THREE-PHASE
VARIABLE FREQUENCY POWER TRANSISTOR INVERTER.

BY. A. ANTONIOU

ABSTRACT

This project deals with the design, construction and testing of a three-phase Variable Frequency Power Inverter controlled by a microprocessor.

The inverter was designed to have 24V d.c. input and 415V 50HZ output with a power of 500W.

Therefore to satisfy this requirement, a transformer of 500VA power rating with 24V primary and 240V/phase secondary was used.

The switching elements used were power transistors (2N3055 and PNP3055) and information concerning these transistors can be seen in APPENDIX 4.

The conduction angle of the power transistors can be 120° or 180° but in the desing of this project the 180° was used which gives better output waveforms.

The control signals were generated by a Z80-MICROPROFESSOR.

The constructed power inverter was tested with both resistive and inductive loads and found to operate successfully.

The chapters discussed in this project were: Inverters in general, Thyristor and Transistor Inverters and their applications, the Z80-MICROPROFESSOR, the Design of the three-phase Variable Frequency Power Inverter as well as the circuit explanation, Calculations and Control Program Explanation.

Furthermore a chapter was needed for the testing and the results, also another chapter to discuss the operation of the circuit and ways to protect it and another chapter to refer to the further improvement of the three-phase power transistor inverter.

Finally this project is completed with personal conclusions.

NOTE: On Appendices useful information are available about the constructional details of the circuit, heat and power design, phototransistor opto-isolators power transistors and the electrical specifications of Z80 - PIO.

CONTENTS

PAGE

ACKNOWLEDG	FMENTS				
ABSTRACT					
CHAPTER 1	INVERTERS				
CHAPTER	1.1 Introduction				
	1.2 Thyristor Inverter				
	1.3 Transistor Inverters				
	1.4 Application of Inverters				
	1.4.1 Introduction				
	1.4.2 Induction Motor Speed Control				
	1.4.3 Slip Recovery Systems				
	1.4.4 Uninterruptible Power Supplies (UPS)				
CHAPTER 2	THE Z80-MICROPROFESSOR	11			
	2.1 Introduction				
	2.2 Interfacing peripherals				
	Input and Output devices				
	2.3 Z80 Parallel input/output				
	device (PIO)				
	2.4 Control Word				
CHAPTER 3	THE DESIGN OF A MICROPROCESSOR				
	CONTROLLED THREE-PHASE VARIABLE				
	FREQUENCY POWER TRANSISTOR INVERTER	17			
	3.1 Circuit explanation				
	3.2 The design of the current limiting				
	resistors				
	3.3 Control program explanation				
	3.4 Program flowchart				
	3.5 Control program				
CHAPTER 4	CALIBRATION AND TESTING OF THE THREE				
	PHASE INVERTER	28			
	4.1 Introduction				
	4.2 Calibration				

4.3 Testing

CH	APTER	5	CIRCUIT IDEAS AND MORE APPLICATIONS			
			OF	THRE	E-PHASE INVERTERS	31
			5.1		Introduction	
			5.2		Protection of the inverter circuit	
					Inverters and photovoltaics	
			5.3	.1	General	
			5.3	.2	What is photovoltaics?	
			5.3	.3	Where is phtovoltaics applied?	
			5.3	. 4	Advantages	
CH.	APTER	6,,,,,	A F	'URTH	HER IMPROVEMENT ON THE THREE-PHASE	
			POW	ER T	TRANSISTOR INVERTER	35
			6.a	Ŀ	How to achieve the further	
					improvement	
			6.b)	Variable frequency operation	
			6.0	;	Voltage and frequency control	
			6.d	l	PWM Inverter	
			6.e	;	Conclusions	
SU	MMARY					44
RE	FEREN	CES				45
AP	PENDIC	CES				
	1.	(CONS	TRU	CTIONAL DETAILS	46
		•	1.1	Int	croduction	
		•	1.2	The	e photographic method for producing	
				pcl	o's	
			1.3	Cor	mponents needing mounting on	
				hea	at sinks	
2.		I	TASE	INA '	POWER DESIGN	49
	3.	1	rons	OTR	ANSISTOR OPTO-ISOLATORS	5 5
	4.	-	THE	BFY!	52, 2N3055 AND BD132 TRANSISTORS	58
	5.	5	CHE	Z80-	-PIO ELECTRICAL SPECIFICATIONS	61