DESIGN OF A HOUSEHOLD DESALINATION PLANT

by

Antoniou Emilios

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1992

HIGHER TECHNICAL INSTITUTE

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Mr P. Tramountanellis, my Project Supervisor, and Mr Th. Symeou, Industrial Training Officer for all the necessary guidance and help they have given to me.

I would like also to thank all my supervisors to the three places that I worked (Moni Power Station, Cyprus Port Authority, HITECO) for their valuable assistance in the preparation of my project.

1

INTRODUCTION

Desalting is the production of fresh water from brackish or salt water. It has become important because water use is increasing rapidly throughout the world. In many areas of the world the use of natural fresh water is reaching the limit of the available supply. Additional sources of supply must be developed. One likely method of providing at least a part of this supplemental water is to desalt inland brackish or sea water.

Land based desalination plants are being used on isolated islands, in the Middle and Near East and in industrial districts which are suffering a water shortage.

One of the big problems connected with producing fresh water from seawater with a land based desalination plant is cost. It is necessary to keep the cost as close as possible to the cost of natural water (rainwater contained in reservoirs and purified at a purification plant). Research has been done on various desalination plants which can produce adequate water at reasonable cost.

Methods of desalting

In desalting processes, either fresh water is removed from the saline solution or disolved solids are extracted from the solution to reduce salinity.

<u>CONTENTS</u>

	<u>Page</u>
ACKNOWLEDGEMENTS	I
CONTENTS	II
INTRODUCTION	IV
CHAPTER 1	
Study the relevant theories for desalination	
1.1. Multi-Stage Flash Desalination Method	2
1.2. Freezing Method	6
1.3. Reverse Osmosis	7
1.4. Electrodialysis	11
1.5. Evaporation Process	13
CHAPTER 2	
Calculations	
2.1. Assumptions	16
2.2. Calculations	17
CHAPTER 3	
Flow Diagram and Control System	27
Parts list of the Flow Diagram and Control	
System (Drg 1)	28
Operation of the Plant	29
CHAPTER 4	
${f S}$ pecifications for the installation of the	
materials and equipment used on the plant	
4.1. For the small tanks	33
4.2. For the big tank	35
4.3. Fuel Oil tank	37
4.4. Storage tank for the potable water	38
4.5. Dosing System	41
4.6. Pipe Sizing	45
4.7. Flue	49
4.8. Pump Selection	49

	Page
4.9. Pump Selection	56
4.10. Pump Selection	62
4.11. Steam Boiler	62
4.12. Selection of Burner	70
4.13. Fittings	73
4.14. The Furnace	77
4.15. The Heat Exchanger	77
4.16. Filters	79
4.17. Steam Trap	80
4.18. Safety Valve	81
4.19. Instruments	81
CHAPTER 5	85
MAINTENANCE	
5.1. Scale Formation	86
5.2. Indication of Scale Formation	86
5.3. Method of Scale Removal	86
5.4. Acid Cleaning Safety Precautions	87
CHAPTER 6	90
Basic Calculations for the design of the	
Tower of the Plant	91
CHAPTER 7	95
COST ANALYSIS	
7.1. Cost Analysis	96
7.2. Capital Cost	96
7.3. Running Cost	100
CHAPTER 8	101
CONCLUSIONS - DISCUSSIONS	102
References	104
Appendices	105
Drawings	106