AN EXPERIMENTAL STUDY ON THE FLEXURAL PROPERTIES OF GLASS FIBER REINFORCED CEMENT

By

Antoniou Efrosini

and

Kouparis Michalakis

PROJECT REPORT

Submitted to

the Department of Civil Engineering of the Higher Technical Institute

Nicosia, Cyprus

In partial fulfillment of the requirements for the award of

TECHNICIAL ENGINEER

In

CIVIL ENGINEERING C/943

June 2001

CHAPTER 1

INTRODUCTION

ŝ

Problem

Nowadays, the building industry in Cyprus is completely depended on concrete. One of the most common problems that most constructions have in Cyprus is the early shrinkage of concrete.

Plain concrete composed of sand gravels¹ (aggregates) and cement, is a brittle material with a low tensile strength and strain capacities. These abilities of concrete have let to problems such as plastic shrinkage cracking and settlement cracking during the first 24 hours after placement.

This is a big problem, in this beautiful island, since the climate is very dry and expansion and contraction is a common phenomenon. Also, Cyprus being in the Mediterranean Sea, where the soil in these territories is mostly soft clay, with the variation of temperature, concrete leads to cracking. Another factor that plays an important part to this problem is the fact that fault constructional materials are often used, since there are a lot of projects in process and there is not enough time for a proper check.

Importance of the study

In order to overcome these problems, studies of research and testing have been made during the last thirty years with the use of fiber reinforced cements and concretes (F.R.C.).

These tests have shown that the addition of fiber glass to plastic concrete substantially increases the resistance of the concrete to early age plastic shrinkage cracking and cracking in response to vibration at early ages. Also a fiber increases the strain capacity (ability to resist strain without developing visible cracking) of the immature concrete. This is particularly important since a large amount of the cracking of concrete occurs during the 24 hours after the concrete has been placed when the concrete is most susceptible to vibration, plastic shrinkage and settlement cracking.

The aim

These tests have proved that fiber glass reinforcement (F.R.C.) has such properties which give applications and solutions to various constructural and architectural difficulties and problems.

Limitation

In this project it must be taken into account that the bibliography and information of glass fiber reinforced concrete (GFRC) was limited, since glass fiber is a new product and only a few companies, in Cyprus, are acquinted with this product.

2

Moreover, only a few project with the use of fiber glass reinforcement have been established and what the result will actually be in the next fifty years is not known.

In addition the experimental time for this project in the labs was limited as well. More samples and tests could have been made in order to have better comparising results. Also the shrinkage elongation test and vebe flow table test comparing plain and fiber glass reinforced concrete was not achieved due to short length of time and not enough materials available.

TABLE OF CONTENTS

ACKNOWLED	GEMENTS	page ii
CHAPTER		
1	INTRODUCTION	1
1	Problem	1
	Importance of the study	2
	The aim.	2
	Limitation	2
2	A GENERAL SURVEY ABOUT FIBERS	4
	Role of fibers	4
	Various applications	5
	How should fibers be treated in the mix	6
3	A GENERAL SURVEY	8
	Background	8
	General survey about glass fibres	9
4	A GENERAL SURVEY ABOUT GFRC	12
	What is GFRC	12
	Production of GRC composites	13
	Production processes.	14
	Premixing.	14
	Spray-up	15
	Winding	16
	Properties of GFRC-Engineering properties	17
	Flexural properties	23
	Local flexural stress	24
	Architectural properties	25
	Uses of GFRC	26
	Roofing	27
	Noise barriers	28
	Bridges	28
	Dust and channels	29
	Tunnels	29
5	EXPERIMENTAL INVESTIGATION	30
	Introduction	30
	Mix proportions	31
	Sieve analysis	33
	Procedures followed for sieve analysis	34
	Results for sieve analysis	35
	Mixing and casting procedure	40
	Curing	44
	Workability	44
	Procedure followed for slump test	45
	Comments for workability	46
	Testing.	46
	Procedure followed for the compressive strength of test cubes	46
	Comments for the compression strength of the test cubes	51
	Procedure followed for the flexural strength of test slabs	53
	Results for the flexural strength of test slabs	54
	Comments for the flexural strength of the test slabs	57

6	GENERAL COMMENTS	
REFERENCES		62

\$