HIGHER TECHNICAL INSTITUTE

ELECTRIGAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

OF A LUXURY HOUSE

E. 1438

MANOS CONSTANTINOU

JUNE 2009

DESIGN OF THE ELECTRICAL SERVICES OF A LUXURY HOUSE

PROJECT REPORT SUBMITTED BY MARIOS CONSTANTINOU

TO THE DEPARTMENT OF ELECTRICAL ENGINEERING OF THE HIGHER TECHNICAL INSTITUTE

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR AWARD OF THE DIPLOMA OF TECHNICIAN ENGINEER

JUNE 2009

CONTENTS

	PAGE
ACKNOWLEDGEMENT	1
SUMMARY	2
INTRODUCTION	3
CHAPTER 1 : ILLUMINATION DESIGN	
1.1 Introduction	6
1.2 Rules for Energy Efficient Lighting	6
1.3 Definitions and Units	7
1.4 Determining the Maximum Distance Between Luminaries	8
1.5 Methods of Illumination	8
1.6 Procedure of the Lumen Method	9
1.7 Procedure of the Point by Point Method	10
1.8 Typical Calculations	10
1.8.1 Kitchen	10
1.8.2 Dining Room	11
1.8.3 Living Room	12
1.8.4 Sitting Room	12
1.8.5 Laundry Room	13
1.8.6 Photovoltaic-System Room	14
1.8.7 Bedroom 1	14
1.8.8 Bedroom 2	15
1.8.9 Bedroom 3	16
1.8.10 Bedroom 4	16
1.8.11 Garage	17
1.9 Table of Results	19

CHAPTER 2 : LIGHTING CIRCUIT DESIGN	
2.1 Introduction	21
2.2 Circuit Design Procedure	21
2.3 Voltage Drop	22
2.4 Protection Against Electric Shock	23
2.5 Thermal Constraints	23
2.6 Typical Lighting Circuit Calculation of L1/DBA	24
2.7 Typical Lighting Circuit Calculation of L7/DBA	26
2.8 Typical Lighting Circuit Calculation of L8/DBA	27
2.9 Typical Lighting Circuit Calculation	28
2.10 Calculations of Conduit Diameter	30
2.11 Table of Results	31
2.12 Residual Current Device Check	32
CHAPTER 3 : SOCKET OUTLETS DESIGN	
3.1 Introduction	34
3.2 Typical Socket Outlets Circuit Calculations of S1/DBA	34
3.3 Calculations of Conduit Diameter	38
3.4 Table of Results	39
3.5 Residual Current Device Check	40
CHAPTER 4 : FIXED ELECTRICAL APPLIANCES	
4.1 Typical Cooker Unit Calculations (P1/DBA)	41
4.2 Typical Refrigerator Calculations (P2/DBA)	43
4.3 Typical Dish Washer Calculations (P3/DBA)	45
4.4 Typical Water Heater Calculations (P1/DBB)	47
4.5 Typical Washing Machine Calculations (P2/DBB)	49
4.6 Typical Dryer Calculations (P3/DBB)	51
4.7 Typical Video Phone Calculations (P4/DBA)	53
4.8 Typical Water Pump Motor Calculations (P5/DBA)	55
4.9 Calculations of Conduit Diameter	56

CHAPTER 5 : AIR CONDITION DESIGN

5.1 Introduction	58
5.2 Air condition Unit Selection Procedure	58
5.3 Typical A/C 3 Calculations (P8/DBA)	59
5.4 Typical A/C 1 Calculations (P6/DBA)	61
5.5 Typical A/C 2 Calculations (P7/DBA)	62
5.6 Typical A/C 4 Calculations (P9/DBA)	62
5.7 Typical A/C 5 Calculations (P10/DBA)	63
5.8 Typical A/C 6 Calculations (P4/DBB)	63
5.9 Typical A/C 7 Calculations (P5/DBB)	64
5.10 Calculations of Conduit Diameter	64
5.11 Table of Results	65

CHAPTER 6: STORAGE HEATERS

6.1 Introduction	66
6.2 Selection of Storage Heaters for Each Room	66
6.3 Typical Calculations of Storage Heater SH2 (DBA)	68
6.4 Calculations of Conduit Diameter	70
6.5 Table of Results	70
6.6 Supply Cables to the DB/FF (DB/GF to DB/FF)	72
6.7 Supply Cables to the DB/GF (Meter to DB/GF)	73
6.8 Calculations of Conduit Diameter	74
6.9 Single Line Diagram	76

CHAPTER 7 : SWIMMING POOL DESIGN

7.1 Introduction	77
7.2 Regulations Concerning the Design of the Swimming Pool	77
7.3 Swimming Pool Panel	78
7.4 Single Line Diagram	78

7.5 Sill D. Oslaulations (D1(DDC)	70
7.5 Filter Pump Calculations (P1/DBC)	78
7.6 LED Underwater Lights Calculations (L1/DBC)	81
7.7 Supply Cables to the DBC (DBA to DBC)	82
7.8 Calculations of Conduit Diameter	83
7.9 Table of Results	84
CHAPTER 8 : AUTOMATIC SLIDING GATE	
8.1 Introduction	85
8.2 Automatic Sliding Gate Calculations (P11/DBA)	85
8.3 Conduit Diameter	86
CHAPTER 9 : SUPPLY CABLES TO THE DISTRIBUTION BOARDS AND)
LOAD BALANCING	
9.1 DBB Load Balancing	87
9.2 Supply Cables to the DBB (DBA to DBB)	89
9.3 DBA Load Balancing	90
9.4 Supply Cables to the DBA (Meter to DBA)	92
9.5 Calculations of Conduit Diameter	93
5.4	
CHAPTER 10 : SINGLE LINE DIAGRAMS	
10.1 DBA	94
10.2 DBB	95
10.3 DBC	95
10.4 Schematic Diagram	96
CHAPTER 11 : BONDING AND EARTHING CONDUCTORS	
11.1 Introduction	97
11.2 Main Bonding Conductors	97
11.3 Supplementary Bonding Conductors	98
,	

CHAPTER 12 : INSPECTION AND TESTING *	
12.1 Introduction	100
12.2 Continuity of Protective Conductors, Including Main	101
and Supplementary Bonding	
12.3 Continuity of Ring Final Circuit Conductors	104
12.4 Insulation Resistance Test	106
12.5 Polarity Test	109
12.6 Earth Electrode Resistance Test	110
12.7 Protection by Separation of Circuits	111
12.8 Earth Fault Loop Impedance Test (Ze)	112
12.9 Functional Testing	114
CHAPTER 13 : STRUCTURED CABLING	
13.1 Introduction	115
13.2 Advantages of Using Structured Cabling	115
13.3 Structured Cabling Terminology	116
13.4 Telephony Glossary	118
13.5 Earthing	119
13:6 Structured Cabling Standards	120
13.7 Cables	120
13.8 Topology	121
13.9 Telephony Schematic Diagrams	121
13.10 Structured Cabling Diagram	123
13.11 Telephone and Data Distribution Arrangement	124
CHAPTER 14 : TV AND SATELLITE ANTENNA	
14.1 Glossary	125
14.2 Calculations of Conduit Diameter	126
14.3 Single Line Diagram	127

CHAPTER 15 : INTRUDER ALARM SYSTEM	
15.1 Introduction	128
15.2 Aims of an Intruder Alarm System	128
15.3 Equipment Used	129
15.4 System Planning and Design	130
15.5 Power Supply	132
15.6 Wiring	133
15.7 Testing	133
15.8 Typical Calculation of the Intruder Alarm Control Panel (P12/DBA)	134
15.9 Intruder Alarm System Interconnections	136
CHAPTER 16 : FIRE ALARM SYSTEM	
16.1 Introduction	138
16.2 Aims of a Fire Alarm System	138
16.3 Equipment Used	139
16.4 System Planning and Design	139
16.5 Power Supply	140
16.6 Wiring	141
16.7 Testing	141
16.8 Typical Calculation of the Fire Alarm Control Panel (P13/DBA)	142
16.9 Fire Alarm System Interconnections	144
CHAPTER 17 : LIGHTNING PROTECTION SYSTEM	
17.1 Introduction	146
17.2 How Does Lightning Build Up	146
17.3 Effects of Lightning Strike	147
17.4 Function of a Lightning Conductor (Direct Lightning)	149
17.5 Indirect Lightning	149
17.6 Estimation of Exposure Risk	150
17.7 Zones of Protection	152
17.8 Component Parts	152

17.9 Inspection and Testing	154
17.10 Equipment Used	155

CHAPTER 18 : PHOTOVOLTAICS

18.1 Introduction	156
18.2 How Do Photovoltaic Cells Work	157
18.3 Advantages and Disadvantages of Photovoltaics	158
18.4 Factors Affecting the Energy Output	159
18.5 Types of Photovoltaic Cells	160
18.6 Grid-Connected System	160
18.9 Grid-Connected System: Parameters	161
18.10 Grid-Connected System: Economic Evaluation	163
18.11 Grid-Connected System: Main Results	164
18.12 Installation	166
18.13 Maintenance	166
18.14 Inspection	166
18.15 Photovoltaic System Single Line Diagram	167
18.16 Photovoltaic System Block Diagram	167
CHAPTER 19 : MATERIALS AND COSTING	
19.1 Introduction	168
19.2 Lighting Circuits	170
19.3 Socket Outlets Circuit	172
19.4 Fixed Electrical Appliances	173
19.5 Air Condition Circuits	174
19.6 Storage Heater Circuits	174
19.7 Swimming Pool	175
19.8 Automatic Sliding Gate	175
19.9 Main Switchgear and Distribution Boards	176
19.10 Telephone, TV and Data Distribution	178
19.11 Intruder Alarm System	179

19.12 Fire Alarm System	180
19.13 Lightning Protection System	181
19.14 Costing Evaluation	182
CONCLUSION	183
REFERENCES	184
APPENDICES	186

ACKNOWLEDGEMENT

I would like to express my thanks to my project supervisor Mr. G Kourtellis, lecturer of the Electrical Engineering Department of H.T.I. for his valuable guidance and assistance throughout the project period.

I wish to express my appreciation to all those who provided many valuable suggestions and necessary information such as specifications, technical data and price lists of equipment used.

Finally, special thanks to my family for the courage that gave me during the completion of this project and during my studies in the Institute.

1

e.

SUMMARY

DESIGN OF THE ELECTRICAL SERVICES OF A LUXURY HOUSE

Submitted by: Marios Constantinou

The purpose of this work is the design of the electrical services of a luxury house.

The whole design was carried out in accordance to IEE Wiring Regulations 16th Edition and CYTA's requirements.

This project includes 19 chapters. These chapters cover the Illumination design, Power Circuits (swimming pool, A/C, storage heaters, socket outlets etc.), Lighting, Fire and Intruder alarm systems, Telephone, TV and data distribution, Lightning Protection, Photovoltaics and Materials and Costing.

The project includes typical calculations, analytical tables and detailed architectural drawings.

Also appendices are included at the end to the report giving specifications of the equipment used, the relevant regulations and all the tables used for the calculations.

The whole design must be carried out with care and responsibility _ since it is directly involved with the safety of people.

2

INTRODUCTION

This project examines in detail all the electrical services which are included in a modern luxury house.

It consists of 19 chapters which are listed below:

Chapter 1: Illumination Design

This chapter deals with the illumination design of every room in the house using the Lumen method.

Chapter 2: Lighting Circuit Design

This chapter deals with the lighting circuit calculations for the selection of the protective devices, conductors, conduits and other equipment.

Chapter 3: Socket Outlets Design

This chapter deals with the socket outlets circuit calculations for the selection of the protective devices, conductors and conduits.

Chapter 4: Fixed Electrical Appliances

This chapter deals with the selection of the fixed electrical appliances and the calculations for the selection of the protective devices, conductors, conduits and other equipment.

Chapter 5: Air Condition Design

This chapter deals with the selection of the proper A/C unit for each room as well as all the calculations needed for the selection of the protective devices, conductors, conduits and other equipment.

<u>Chapter 6:</u> Storage Heaters and Calculations of the Supply Cables

This chapter deals with the selection of the proper KW rating of each storage heater for each room as well as all the calculations needed for the selection of the protective devices, conductors, conduits and other equipment.

<u>Chapter 7:</u> Swimming Pool Design

This chapter examines the power rating of the swimming pool panel and all the calculations needed for the selection of the protective devices, conductors, conduits and other equipment.

3

Chapter 8: Automatic Sliding Gate

This chapter deals with the complete design of an automatic sliding gate as well as all the calculations needed for the selection of the protective devices, conductors, conduits and other equipment.

<u>Chapter 9:</u> Supply Cables to the Distribution Boards and Load Balancing This chapter deals with the power rating of the distribution boards as well as the proper balancing between the loads. The chapter includes all the calculations needed for the selection of the protective devices, conductors, conduits and other equipment.

Chapter 10: Single Line Diagrams

This chapter includes the single line diagrams of every distribution board of the installation, showing clearly the ratings of the protective devices of each circuit, the phase used for each circuit, the RCDs used and the cross sectional area of each conductor.

Chapter 11: Bonding and Earthing Conductors

This chapter refers to the selection of the main equipotential bonding and supplementary bonding conductors of the installation.

Chapter 12: Inspection and Testing

This chapter provides all the necessary steps for the inspection and testing of the electrical installation as stated by the 16th Edition Wiring Regulations.

Chapter 13: Structured Cabling

This chapter deals with the complete design of a data distribution system and telephone system.

Chapter 14: TV and Satellite Antenna

This chapter deals with the design of a TV and Satellite Antenna system.

Chapter 15: Intruder Alarm System

This chapter deals with the design of an intruded alarm system. It explains clearly the equipment used as well as the position of each equipment.

Chapter 16: Fire Alarm System

This chapter deals with the design of a fire alarm system. It explains clearly the equipment used as well as the position of each equipment.

Chapter 17: Lightning Protection System

This chapter deals with the design of a lightning protection system, providing the necessary information for the operation of such a system, the effects of a lightning strike, the estimation of exposure risk, the equipment used etc.

Chapter 18: Photovoltaics

This chapter deals with the design of a grid-connected photovoltaic system. It includes the theory around the operation of the system, the advantages of such a system, the cost estimation of the system, the single line diagrams etc. <u>Chapter 19:</u> Materials and Costing

This chapter estimates the overall cost of the installation taking into consideration the material and labour cost.

Terms and Conditions

- 1. Three-phase 415Vrms, 50Hz TT earthing system.
- 2. External earth fault loop impedance Ze=0.5 Ohms.
- 3. Power Factor, $\cos\varphi=0.85$.
- 4. The whole design is based on IEE Wiring Regulations 16th Edition, CIBS code for illumination design, EAC conditions of supply and CYTA requirements.
 - 5. The house will be fed by an underground supply system.
 - 6. Architectural drawings will be provided.