C/478

PUMPING OF CONCRETE

Project report submitted by

CHRYSOSTOMOU CHRYSOSTOMOS

In part satisfaction of the conditions for the award of Diploma of Technician Engineer in Civil Engineering of the Higher Technical Institute, Cyprus

Project Supervisor : Mr. K. Anastassiades

Lecturer in Civil Engineering,

H.T.I.

External Assessor : M. Adamides

Type of Project

: Individual

June 1989

SUMMARY

"PUMPING OF CONCRETE"

By CHRYSOSTOMOU CHRYSOSTOMOS

This project deals with a special part of concrete technology, which is the pumping of concrete. Its purpose is to enable the reader to get familiarized with as many aspects of this topic as possible. Chapters 1 and 2, which are general, especially chapter 1, serve as an introduction to the main content of the project so that reader will have a general idea of what is going to read. The rest deals with particular topics concerning the pumping of concrete, such as mechanical equipment, applications, principles of pumpable concrete, other features and problems and finally operating costs.

Going through the project, it can be seen that the advantage of pumping is the ability to move concrete both vertically and horizontally at the same time. Pumps can transport concrete more than 60m vertically or 300m horizontally and can discharge 30m³ to 100m³ per hour. There are two types of concrete pumps: piston and peristaltic. The most common in use are the mechanically or hydraulically driven piston pumps.

Nowadays, pumping o concrete finds many applications, It can be used for foundations, basements, slabs, suspended floors and beams, walls and columns, etc. As a conclusion, concrete for pumping has first to meet the requirements of the specification but it also has to be pumpable. The pumping mix must not tend to segregate or bleed and needs to have a low frictional resistance to enable it to be pushed along the pipeline.

This can generally be obtained by having.

- (a) a target slump of 75mm
- (b) a cement content of at least 280 kg/m³ to ensure complete filling of the voids in the combined aggregates
- (c) a uniform aggregate grading with no gaps and a minimum of voids
- (d) a slightly increased sand content over that normally used-an additional 50 to 75 kg/m³

Aggregates to avoid are flaky or crushed materials.

<u>Contents</u>

				<u>Page</u>
CHAPTER	1:	MATERIALS OF CONCRETE		. 3
		Cement	••••••	. 4
		Aggregates	• • • • • • • • • • • • • • • • • • • •	7
		Admixtures	• • • • • • • • • • • • • • • • • • • •	10
CHAPTER	2:	TRANSPORTATION AND PLA		12
		Transporting concrete		12
		Selection of transpor	tation method	13
		Placing concrete		13
		Methods of transporting	ng and placing of	
		concrete		14
CHAPTER	3:	MECHANICAL EQUIPMENT	FOR CONCRETE PUMPING	G 22
		Mechanically driven p	umps	22
		Hydraulic pumps		24
		Oil-driven pumps		25
		Water-driven piston p	umps	26
		Peristaltic pumps		27
CHAPTER	4:	APPLICATIONS OF CONCR.	ETE PUMPING	29
		Foundations and Basem	ents	29
		Overside slabs	• • • • • • • • • • • • • • • • • • • •	29
		Suspended floors and	beams	30
		Walls and columns	• • • • • • • • • • • • • • • • •	31
		In situ piling		33
		Slipforms		33
		Tunnels		33
		Motorway Bridges		33
		Underwater concreting		34
CHAPTER	5:	PRINCIPLES OF PUMPABL	E CONCRETE	39
		Concrete Pumpability	• • • • • • • • • • • • • •	39
		Effects of pumping on	the mix	39
		Properties of pumpabl	e concrete	41

			Page
		Voids and grading of aggregates	47
		Factors affecting pumping pressure	54
		Admixtures	56
CHAPTER	6:	OTHER FEATURES AND PROBLEMS IN CONCRETE	58
		PUMPING	58
		Pumping to great heights	58
		Large volume pumping	58
		Hot weather	59
		Cold weather	59
		Delays and difficulties	60
		Safety	62
		Training	65
CHAPTER	7:	OPERATING COSTS	67
		Pump committal rate	67
		Output	67
		Depreciation, maintenance and repair	68
		Vehicle and fuel tax	68
		Examples of operating costs (1971)	68