HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

ACTIVE FILTER: AN OVERVIEW

E/1333

DESIGN BY ANDREAS TSIOUTIS

JUNE 2003

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

ACTIVE FILTER: AN OVERVIEW

E/1333

Design by ANDREAS TSIOUTIS

JUNE 2003

ACTIVE FILTER: AN OVERVIEW

BY

ANDREAS TSIOUTIS

Project report submitted to the Department of Electrical Engineering of the Higher Technical Institute Nicosia, Cyprus

in partial satisfaction of award

of diploma of

TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

Project Supervisor: Dr Christos Marouchos Lecturer in Electrical Engineering, HTI

JUNE 2003

ACNOWLEDGEMENTS

I would like to express my sincere thanks to my project supervisor Dr Christo Maroucho, for his continuous guidance and assistance during the design and construction period of this project.

I also express appreciation to the Lab Assistants for their help and many thanks to all people who have help me to make possible this project.

SUMMARY

In recent years there has been considerable interest in the development and applications of Active Filters because of the increasing concern over power quality, at both distribution and consumer levels, and the need to control reactive power and voltage stability at transmission levels. However, there are many different filter configurations that can be employed and there is no standard method for rating the active filters.

The existing approaches are classified and assessed to provide a framework of references for both researchers in this field and for generators, suppliers and consumers of electrical power who are, or may be, concerned about the problems associated with power quality and are considering installing Active Filters for their particular sets of problems. Also this project describes the active filter operation characteristics and develops standard ratings that can be used for filtering different types of nonlinear loads.

At the end of this work we have a construction of a High Voltage Active Filter. Of course a lot of work must be done until to say that the constructed Active Filter is ready for application. Some parts of the project can be modified or improved and also other may be given.

Table of Contents

1	Introduction	3
2	Active Filter Theory	5
	2.1 Active Filter Configuration	5
	2.2 Classification according to power rating and speed of response required in the compensated syste	em _ 7
	2.2.1 Low-power applications	7
	2.2.1.1 Single-phase systems	8
	2.2.1.2 Three-phase systems	8
	2.2.2 Medium-power applications	9
	2.2.3 High-power applications	9
	2.3 Classification according to the power-circuit configuration and connections	-10
	2.3.1 Parallel Active Filters	10
	2.3.2 Series Active Filters	12
	2.4 Other filter combinations	$-\frac{12}{12}$
	2.4.1 Combination of both parallel and series Active Filters	12
	2.4.2 Combination of series active and parallel passive filters	13
	2.4.3 Combination of parallel active and passive filters	14
	2.4.4 Active filter in series with parallel passive filters	14 15
	2.5 Classification according to the compensation (VAP' correction)	
	2.5.1 Reactive-power compensation (VAR correction)	15 16
	2.5.2 Indimone compensation 2.5.2.1 Compensation of voltage harmonics	10 16
	2.5.2.1 Compensation of current harmonics	16
	2.5.2.2 Compensation of current narmonics	16
	2.5.3 Balancing of mains voltages in three-phase systems	- 17
	2.5.3.2 Balancing of mains currents in three-phase systems	17
	2.5.4 Multiple compensation	17
	2.5.4.1 Harmonic currents with reactive power Compensation	17
	2.5.4.2 Harmonic voltages with reactive-power compensation	18
	2.5.4.3 Harmonic currents and voltages	
	2.5.4.4 Harmonic currents and voltages with reactive-power compensation	18
	2.6 Classification based on the control technique	18
	2.6.1 Open-loop control systems	19
	2.6.2 Closed-loop control systems	19
	2.6.2.1 Constant-capacitor voltage technique	19
	2.6.2.2 Constant-inductor-current technique	20
	2.6.2.3 Optimization techniques	20
	2.6.2.4 Linear-voltage-control technique	20
	2.6.2.5 Other techniques	21
	2.7 Classification according to current/voltage reference-estimation technique	21
	2.7.1 Current Voltage-reference synthesis (continuous time-domain control)	$-\frac{22}{22}$
	2.7.2 Current voltage-reference calculation (discrete-time, frequency-domain control)	22
	2.7.2.1 Time-domain approaches	21
	2.7.2.2 Frequency-domain approaches	24
	2.7.2.5 Outer digonalities	25
	9 Determining Active Filter Patings for Nonlinear Loads	20
	2.9.1 Effect of Load Waveform on Filtering Effectives	- 20
	2.9.2 Steady-State Rating Requirements	
	2.10 Effect of Power System Transients on the Active Filters	20
3	Activa Filtar The Construction	
5		33
	2.1 Introduction	33
	2.2 Design of the logic circuit	34
	3.2.1 I ne regulating Pulse Width Modulator LM2524D/ LM3524D.	34
	3.2.2 The LIVIS524D as Kegulating Width Modulator	
	S.2.3 Functional Description of the Control Circuit	37

3 3 The Switching Block	41
3.3.1 The Insulated Gate Bipolar Transistor (IGBT) as a Switching Device	41
3.3.2 The HGTG12N60A4D IGBT device	42
3.4 Construction of the circuits	43
4 Experimental Results	45
5 Conclusions and Recommendations	47
6 Appendices	49

Table of Figures

Figure 1.1. Generalized block diagram for power Active Filters.
Figure 2.1. Diagram illustrating components of the shunt connected active filter with waveforms showing5
Figure 2.2. One line diagram for one leg of the ActiveFfilter
Figure 2.3. Subdivision of power system filters according to power rating and speed of response
Figure 2.4. Subdivision of power system filters according to power circuit configurations and connectors10
Figure 2.5. Parallel active filter configuration10
Figure 2.6. Inverter base Active Filters 11
Figure 2.7. Switched capacitor filter 11
Figure 2.8. Lattice structure configuration 11
Figure 2.9. Voltage regulator active filter 11
Figure 2.10. Series active filter configuration 12
Figure 2.11. Combination of parallel and series active filter 13
Figure 2.12. Series active and parallel passive filter combination 13
Figure 2.13. Parallel active and passive filter combination 14
Figure 2.14. Active filter in series with parallel passive filter combination 14
Figure 2.15. Subdivision according to compensated variables 15
Figure 2.16. Subdivision according to control techniques 18
Figure 2.17. Subdivision according to current/voltage techniques 21
Figure 2.18. Example distribution circuit for active filter application evaluations 26
Figure 2.19. Comparison of active filter performance for an AC27
Figure 2.20. Transient voltage waveforms caused by substation capacitor energizing 31
Figure 2.21. Active filter current output during 32
Figure 3.1. Block diagram 33
Figure 3.2. Control circuit of the logic circuit block with all the modifications 36
Figure 3.3. A step- down switching regulator with the LM3524d in the normal configuration with no
modifications 37
Figure 3.4. Internal voltage regulator circuit 37
Figure 3.5. Timing Resistor Vs Oscillator period graph 38
Figure 3.6. Output dead time Vs Ct in µF graph 38
Figure 3.7. Voltage gain Vs Frequency graph 39
Figure 3.8. Duty Cycle Vs Voltage at Pin 9 graph 39
Figure 3.9. The output stage of the LM3524D. 40
Figure 3.10. Construction of the IGBT 41
Figure 3.11. LM3524D Circuit 43
Figure 3.12. Circuit related with the synchronization of the LM3524D and the mains44
Figure 3.13. The IGBT circuit 44
Figure 4.1. Circuit for the first experiment 45
Figure 4.2. Output waveforms across the output of the circuit 45
Figure 4.3. Circuit of the AC Chopper Voltage Regulator 46
Figure 4.4. Output waveforms 46