HGHER TECHNICAL INSTITUTE ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF ELECTRICAL SERVICES FOR A CLOTHING FACTORY COMPLEX E. 1157

EBENEZER KOM AGGREY

HAVE 1998

HIGHER TECHNICAL INSTITUTE ELECTRICAL ENGINEERING COURSE DIPLOMA PROJECT

DESIGN OF ELECTRICAL SERVICES FOR A CLOTHING FACTORY COMPLEX

E.1157

EBENEZER KOFI AGGREY

è

JUNE 1998

2892

DESIGN OF ELECTRICAL SERVICES FOR A CLOTHING FACTORY COMPLEX.

This project is submitted in partial fulfillment of the award of Diploma of Technician Engineer in Electrical Engineering of the Higher Technical institute, Nicosia, Cyprus.

EBENEZER KOFI AGGREY

JUNE 1998

Project Supervisor: Mr. E. Michael BSC MSC MPSM CEng MIEE

TETRO 2892

External Assessor:

ACKNOWLEDGMENTS

I would like to thank my project supervisor Mr. E. Michael, lecturer in Electrical Engineering at Higher Technical Institute whose help and guidance in this project went considerably beyond the expected.

Also my Sincere thanks extend to:

- Mr George Constantinou Electrical Engineer Cybarco Ltd
- Mr J.C. Haggipavlou & Son Illumination Designer
- Mr Charilaos Ioannou Technician (Foreman) Cybarco Ltd
- Mr Michalis Periklis Technician Cybarco Ltd

for their Valuable assistance during my industrial training.

ŝ

Finally, my heartfelt gratitude goes to all those who offered constructive ideas, suggestions and provided me with specifications and technical data in expediting this project.

LIST OF CONTENTS

			Page
ACKNOWLE	DGEME	ENTS	I
LIST OF CON	TENTS		П
ABSTRACT			IV
INTRODUCT	ION		VI
CHAPTER 1		PLANNING OF A LIGHTING INSTALLATION	
CHAITERI	11	CRITERIA AND DESIGN METHODOLOGY	1
	12	LUMEN METHOD DEFINITIONS	1
	1.2.1	LUMINOUS FLUX	1
	1.2.2	ILLUMINANCE	1
	1.2.3	LIGHT LOSS FACTOR	1
	1.2.4	LAMP LUMEN MAINTENANCE FACTOR	2
	1.2.5	LUMINAIRE MAINTENANCE FACTOR	2
	1.2.6	ROOM SURFACE MAINTEMANCE FACTOR	2
	1.2.7	UTILIZATION FACTOR	2
	1.2.8	ROOM INDEX	12
	1.2.9	SURFACE REFLECTIVITIEVES	2
	1.3	STEPS DETERMINE UTILISATION FACTOR	3
	1.3.1	LUMEN FORMULAR	3
	1.3.2	SPACE HEIGHT RATIO	3
	1.4	SELECTION OF LUMINAIRE	4
	1.4.1.	ILLUMINATION LEVELS	4
	1.4.2.	TYPICAL ILLUMINATION DESIGN	5
	1.4.3.	INSTALLED LIGHTING FITTINGS AND LAMPS	7
CHAPTER 2		PLANNING OF A POWER INSTALLATION	9
	2.1	SOCKET OUTLETS	9
	2.2	LIGHTING AND POWER INSTALLATION	9
	2.2.1	MAIN PROTECTION	9
	2.2.2	CABLES	10
	2.2.3	VOLTAGE DROP	10
	2.2.4	SHOCK PROTECTION AND CPC SIZE	10
	2.2.5	THERMAL CONSTRAIN	10
	2.3	MOTOR INSTALLATION	12
	2.3.1	IEE REGULATIONS FOR MOTOR INSTALLATION	12
	2.3.2	E.A.C. REGULATIONS	12
	2.3.3	DESIGN METHODOLOGY	12
	2.4	CONDUIT SELECTION	14
	2.5	REQUIREMENTS OF THE FACTORY BUILDINGS	16
	2.5.1	ADMINISTRATION BLOCK	16

II

Page

	2.5.2	STORE OF RAW MATERIALS (WARE HOUSE)	16
	2.5.3	SPINNING AREA	16
	2.5.4	UTILITIES AREA	16
	2.5.5	KNITTING AREA	16
	2.5.6	SEWING / CUTTING AREA	17
	2.5.7	STORE OF FINISH PRODUCT/SHOWROOM	17
	2.5.8	METERING ROOM	17
	2.6	TYPICAL LIGHTING CIRCUIT CALCULATIONS	18
	2.6.1	TYPICAL HEATING/COOLING SYSTEM DESIGN (F.C.U)	20
	2.6.2	RING CIRCUIT DESIGN	22
	2.6.3	1-PHASE RADIAL CIRCUIT DESIGN	24
	2.6.4	3-PHASE RADIAL CIRCUIT DESIGN	26
	2.6.5	COOKER CIRCUIT DESIGN	27
	2.6.6	WATER HEATER DESIGN	28
	2.6.7	HAND DRYER DESIGN	30
	2.6.8	3-PHASE KNITTING MACHINE DESIGN	32
	2.6.9	HEATING /AIR CONDITIONING SYSTEM DESIGN (AHU)	34
	2.7.0	PLUG-IN OVERHEAD POWER DUCT	36
	2.7.1	SINGLE PHASE SEWING MACHIN DESIGN	37
	2.7.2	3-PHASE SPECIAL SEWING MACHINES	39
	2.7.3	3-PHASE CUTTING MACHINE DESIGN	41
CHAPTER 3		FINAL CIRCUIT ARRANGEMENT	42
	31	INTRODUCTION	42
	3.2	MAIN PANEL	42
	33	FEEDERS	43
	34	DISTRIBUTION BOARDS(INSTALLED LOAD)	43
	3.5	PROTECTIVE DEVICES	43
	3.6	LOAD ANALYSIS AND THREE PHASE BALANCING	43
	37	DIVERSITY APPLIED	43
	3.8	DISTRIBUTION BOARDS	75
	39	INSTALLED LOAD	76
	3.9.1	KVA RATING OF TRANSFORMER	77
CHAPTER 4		EARTHING	78
	41	GENERAL.	78
	42	DEFINITIONS	78
	4.3	EARTHING ARRANGEMENT	79
CHAPTER 5		POWER FACTOR CORRECTION	81
	5.1	INTRODUCTION	81
	5.2	METHODS OF POWER FACTOR CORRECTION	81
	5.3	CALCULATIONS FOR P.F IMPROVEMENT	82

CHAPTER 6	6.1 6.2 6.3	FAULT LEVEL CALCULATIONS GENERAL DISTRIBUTION LAOYUT TABLE	84 85 86	
	6.4	TYPICAL CALCULATION	87	
CHAPTER 7		INSPECTION AND TESTING	88	
	7.1	GENERAL	88	
	7.2	VISUAL INSPECTION	88	
	1.5	IESIING	00	
CHAPTER 8		FIRE ALARM SYSTEM DESIGN		
	8.1	GENERAL	90	
	8.2	EQUIPMENT USED	90	
	8.3	INSTALLATION	91	,
	8.4	TABLE FOR THE FIRE ALARM SYSTEM	93	
CHAPTER 9		BURGLAR ALARM SYSTEM DESIGN	95	
	9.1	GENERAL	95	
	9.2	EQUIPEMENT USED	95	
	9.3	TABLE FOR THE BURGLAR ALARM SYSTEM	96	
CHAPTER 10		CONCLUSIONS	97	
APPENDIX A'		GENERAL TABLES – NOTES		
APPENDIX B'		LIGHTING SECTION		
APPENDIX C'		SUCKET UTLETS SECTION		
APPENDIX F'		DISTRIBUTION BOARDS SECTION		
APPENDIX F'		FIRE ALARM-BURGLAR ALARM		
APPENDIX G'		FAULT LEVEL CALCULATION TABLE		

ABSTRACT

This project deals with design of electrical services for a clothing factory complex comprising of Store of raw materials (warehouse), Spinning, knitting, sewing/cutting areas, Utilities area, Administration block

The design of the Electrical Services of the factory buildings will include Illumination design, Power, Power factor correction, Fire and burglar alarm systems.

The electrical design is based on the 16th edition of the IEE Regulations for the electrical equipment of the buildings and the requirements of the local undertakers (EAC).

The illumination design complies with the I.E.S. code and recommendations as well as the recommendations from the manufactures of the lamps and fittings.

Supply Voltage: 415V RMS, 50HZ

TT earthing System

The efficiency and power factor of high power circuit where not given must be taken to be 0.8 The Cables to be used are:

- (i) Single Core PVC insulated cables non-armored
- (ii) Multi-core armoured PVC insulated cables
- (iii) Method of installation: Method 3
- (iv) The external earth fault loop impedance is choosen to be 0.5

Fault level calculations have been carried out to decide the Short circuit breaking capacity of the main circuit breaker of each distribution board.

INTRODUCTION

This project consists of ten chapters. Each chapter includes briefly the followings:

CHAPTER 1

It deals with the illumination design work. Various definitions and the lumen method of design are explained and the necessary calculations are presented in a table.

CHAPTER 2

It deals with the electric installation. The relevant I.E.E. regulations and E.A.C. requirments are mentioned and applied.

CHAPTER 3

It includes the determination of the load distribution on each phase and also the calculation of the interconnecting cables sizes and ratings of the M.C.C.Bs. The load distribution on each D.B is shown in table form.

<u>CHAPTER 4</u> It deals with the complet earthting arrangement of the factory.

CHAPTER 5

It deals with methods of power factor correction and calculations for its improvement.

CHAPTER 6

It include fault level calculations, distribution layout and typical calculations.

CHAPTER 7

It deals with inspection and testing of the whole installation.

CHAPTER 8

It deals with the fire alarm system. The fire alarm system is designed in accodance with the British standard code of practice.

CHAPTER 9

It deals with the burglar alarm system. The burglar alarm system is designed in accodance with the British Standard Code of practice.

CHAPTER 10

It deals with the Conclusions of the project.