DESIGN OF A SMALL SCALE WATER TREATMENT PLANT

BY

ISSIFU I. ZAKARIA

Project Report Submitted to the Department
of Civil Engineering of the Higher Technical
Institute Nicosia Cyprus
In partial fulfilment of the requirements
for the diploma of

TECHNICIAN ENGINEER

IN

CIVIL ENGINEERING

PROJECT SUPERVISOR:

MR NICOS KATHIJOTES

LECTURER IN CIVIL

ENGINEERING H.T.I.

EXTERNAL ASSESSOR:

TYPE OF PROJECT:

INDIVIDUAL

JUNE 1991

INTORDUCTION

The purpose of this project is to describe and comment on how surface water can be treated before it can be safely consumed by human beings or efficiently be used in industry, considering the cost effect.

Water is one of the most abundant compounds found in nature, covering approximately three-fourths of the surface of the earth. It is almost the only compound to occur naturally on the earth's surface as a liquid.

The presence or absence of water in an area has a proformed influence on its development and prosperity. The availability of a water supply adequate in terms of both quantity and quality is essential to human existence.

Despite that water in nature is most nearly pure in its evaporation state, thus with little impurities, human activities also contribute further impurities in the form of industrial and domestic wastes agricultural chemicals and other less obvious contammants. It is therefore important to appreciate that no natural water is chemical pure and indeed pure water (H_2O) is not a palatable drink. It is the small concentrations of dissolved solids and gases which give most natural waters their pleasant tastes.

Surface wate is simply water on the surface of the earth. It is oceans and puddles, mighty rivers etc. The source of surface water israin along with snow slect and hail.

The quality of surface water depends on the quality of

rainwater itself, what it picks up as it flows along, the biological life in the water, the ways it is used and contanminants that get pumped into it.

But, by far, the most important factor in determing the quality of surface water is the way the water is used. Since the human race began, people have settled along the banks of rivers, streams, and lakes. There, they enjoy a reliable source of drinking water, food, and a following path is other places and other people. The Ganges, the Nile, the Thames and the Amazon all share that common bit of history.

More over modern man has found additional ways to use water: for industrial processing, for boiler cooling for recreation
and to lure tourists. And our rivers and lakes have proven
to be a convenient place to dump waste - human and industrial.

About half the pollutants rivers and lakes received are direct discharges from storm sewers, municipal sewage treatment plants and industries. The other half comes from untreated and uncotrolled run off from parking lots lawns, agricultural areas, and construction sites. These pollutants do not always deteriorate the quality of surface meters noticeably, but in some rivers and lakes of already dubious quality, this additional pollution may be just enough to make the difference between acceptable and unacceptable water. When the amount of waste dumped into a body of water exceeds the capacity of the water to treat it, or when the wastes are poisonous to life in the water, the waterways cannot rejuvenate themselves.

It is therefore the aim of this project to explore all the necessary areas possible and to recommend the most ideal process on how to treat surface water.

CONTENTS

		Page
Dedi	cation	i
Ackn	owledgement	ii
Introduction		iii
Chap	ter 1	
Phys	ical Quality of water	
1-1	Suspended solids	1
1-2	Turbidity	3
1-3	Colour	5
1-4	Taste and Odor	6
1-5	Temperature	9
Chap	oter 2	
Chem	ical Quality of water	
2-1	Chemistry of solutions	11
2-2	Total Dissolved Solids	14
2-3	Alkahnity	16
2-4	Hardness	18
2-5	Fluoride	20
2-6	Metals	21
2-8	Nutrients	23
2-7	Organics	25
Chap	oter 3	
Biol	ogical Quality of water	
3-1	Pathogens	27
3-2	Pathogen Indicators.	30

Chapter 4

	Page
Water theatment	
4-1 Introducction	32
4-2 Impurities of natural waters	34
4-3 Mode of operation	35
4.3.1 Prechlorination	36
4.3.2 Congulation	37
4.3.2.1 Selection of Coagulant	38
4.3.3 Flocculation	39
4.3.4 Sendimentation	41
4.3.4.1 Sedimentation with coagulation	42
4.3.4.2 Types of Sedimentation Tank	44
4.3.4.3 Settling Rates	46
4.3.5 Filtration	47
4.3.5.1 Types of Filter	48
4.3.5.2 Filter Washing	50
4.3.6 Disinfaction	51
4.3.7 Softening	54
4.3.8 Quality control in tanks and reservoirs	54
4.3.8.1 Operation and Maintenance Practices	55
Chapter 5	
Design of water treatment plant	
5.1 Introduction	58
5.2 Source and Quality of water	59
5.3 Design of a settlement tank	59
5.4 Design of Rapid Sand Filters	62
5.5 Design of Chlorination Tank	64
5.6 Design of Lime Tank	65
5.7 Design of main Reservoir	66

	Page
5.8 Design od dilution Tanks	67
5.8.1 Dilution tank for the Dilution	67
of Aluminium Sulphate	
5.8.2 Dilution tank for the dilution of lime	67
5.9 Pumps	68
5.10 Design of Storage Tank	69
5.11 Summary on Khirokitia Plant	
Summary	
Conclusion	
References	