HIGHER TECHNICAL INSTITUTE ELECTRICAL DESINEERING DEPARTMENT DIPLOMA PROJECT

DEVELOPMENT OF
DOMESTIC SATELLITE
MONITORING SYSTEM

BY

KOURTELLIS ACHILLEAS

E.112

NICOSIA" JUNE 1998

HIGHER TECHNICAL INSTITUTE ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DEVELOPMENT OF DOMESTIC SATELLITE MONITORING SYSTEM

BY

KOURTELLIS ACHILLEASE.1112

NICOSIA, JUNE 1998

SATELLITE ANTENNA SYSTEMS

BY

KOURTELLIS ACHILLEAS

PROJECT REPORT: Submitted to the Electrical Engineering Department of H.T.I, Nicosia, Cyprus in partial fulfilment of the requirements for the diploma of

TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

PROJECT SUPERVISOR: Mr. D. Lambrianides

Lecturer in Electrical

Engineering Department

Nicosia 1998

HIGHER PROJECT NO. TECHNICAL 2847

ACKNOWLEDGEMENTS

This project is dedicated to those that believed in me and especially to the woman that I will always love.

I would like also to thank everyone that helped me in fulfilling this project.

HIGHER TECHNICAL INSTITUTE Nicosia - Cyprus

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

Academic Year 1997/98

Project Number, E. 1112

Title:

Development of Domestic Satellite Monitoring System

Objectives

- 1. To study different types of Domestic Satellite Systems (Analogue / Digital).
- 2. To study the technology Satellite Systems (past/modern/future)
- 3. To study and test amplifiers used in industry for domestic Satellite / TV signals.
- 4. To test and improve an existing Satellite Monitoring System (signal testing, positioning, increase number of LNB etc)

Terms and conditions

- 1. Satellite Monitoring System (Provided by HTI)
- 2. Amplifiers (Provided by industry)

Student

: Achilleas Kourtellis, 3EL1

Supervisor

: Mr D Lambrianides

External Assessor:

DL/ML

CONTENTS

CHAPTER 1: General information about Satellites and Satellite Orbits

	Introduction	2
_	History of Satellite Technology	3
_	Chronological Order	4
_	What keeps Satellites in Orbit	7
_	The Clarke Belt	11
_	KU-BAND	12
	Satellites at KU-Band Information and fact sheets	13
_	C-BAND	14
-	Satellites of C-Band Information and fact sheets	15
	States and Organizations	16
_	List at Geostationary Satellites	17
	Useful Constants and Equivalents	20
<u>СН</u>	IAPTER 2: Satellite Antennas	
_	Introduction	22
	Parabolic Reflectors	23
_	Prime Focus Antennas	25
_	Offset Focus Antennas	26
_	The Cassegrain Antenna	28
_	The Gregorian Antenna	29
_	The Backfire Antenna	30
	The flat antenna	31
_	Antenna gain	32
	Dish efficiency	33
-	Factors affecting the performance of an antenna	34
<u>CH</u>	IAPTER 3: Satellite Receivers	
_	Introduction	36
_	Block Schematic of a basic Satellite receiver	37
_	Power supplies	38

CONTENTS (Cont.)

_	Power supply diagram	39
_	The turner/demodulator	40
ş <u> </u>	Block schematic of a typical tuner / demodulator module	41
£	Video processing	43
n	Sound processing	44
_	UHF modulator	44
_	A survey in Cyprus market	45
<u>CH</u>	APTER 4: Head units and Satellite dish components	
_	Introduction	47
_	The feedhorn	48
_	Polarizers	49
_	OMT	51
_	Low Noise Block (LNB)	52
_	Feeds	53
_	Universal LNB's	54
_	Antenna mounts	55
_	Motorised positioning systems	62
<u>CH</u>	APTER 5: Installation	
0 <u></u> 0	SITE SURVEY	65
	Introduction	65
	 Finding Satellite co-ordinates 	66
	 Magnetic variation 	67
_	Assembly of antenna and head units	68
_	Outdoor cable connections (fixed Satellite Systems)	69
_	Outdoor cable connections (multi-Satellite Systems)	70
_	Indoor work	71

CONTENTS (Cont.)

CH	APTER 6: Satellite Digital Receiver System	
_	Digital Satellite transmission	73
_	Reception	73
_	Decoding	73
_	MPEG Decoding	73
	Digital Satellite receiver user's guide	74
<u>CH</u>	APTER 7: Experiment using current equipment and testing	
_	Introduction	76
_	Prime focus at 13° E	77
_	Prime focus at 16° E	79
_	Two birds on one dish	80
	Notes	82
	Conclusions	82
CH	APTER 8: Equipment for domestic Satellite Systems	
	Micro MATV	84
<u>CH</u>	APTER 9: Another Point of view	
_	Are people interested in Satellites?	86
	Psychology	87

CHAPTER 10: References

INTRODUCTION

The Satellite is the element that makes the whole link possible. The satellites we are concerned with are in geostationary orbit. That is when seen from the earth they seem to be always in the same location.

The position of the satellites is given in longitude from the Greenwich Meridian. Satellites operating in different frequency band can be collocated (separated by 0.2 degrees). Satellites operating in the same frequency band can not be located closer that 2 degrees due to the performance characteristics of earth station antennas. If the satellites were located closer significant interference would occur.