HISHER TEXHINGAL METTUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A POWERED BICYCLE

M/899

BY KALIS MARIOS

(3ME2)

HIGHER TECHNICAL INSTITUTE

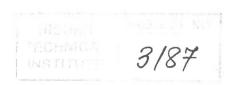
MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A POWERED BICYCLE. (M/899)

BY
KALLIS MARIOS
(3ME2)

HIGHER TECHNICAL INSTITUTE PROJECT NO.


HIGHER TECHNICAL INSTITUTE NICOSIA – CYPRUS

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A POWERED BICYCLE

by
KALLIS MARIOS
(3ME2)

HIGHER TECHNICAL INSTITUTE

NICOSIA-CYPRUS

MECHANICAL ENGINEERING DEPARTMENT

Diploma Project 1999/2000

Project Number: M/899

Title: "DESIGN OF A POWERED BICYCLE"

Objectives:

- 1. Study existing technology on powered machinery.
- 2. Design a system for powering a bicycle which could include, pneumatic, hydraulic, solar or any other power than electrical.
- 3. Select components and materials off the shelf.
- 4. Produce detailed engineering drawings of the new design.

Terms and conditions:

1. Drawings must be constructed in ISO standards

Student:

Marios Kallis

Supervisor: Lazaros Lazaris

LL/AEP

Objectives 99-00(77)

CONTENTS:

Acknowledgements

			Page
<u>Chapter 1</u> :			
	1.1.	Introduction	
	1.2.	Study existing Technology	2
Chapter 2:	Need	Analysis Phase	
Chapter 2.		Recognition of need	7
	2.1.	Recognition of need	•
Chapter 3:	Creat	ivity phase	
	3.1.	Solution	8
	3.2.	Decision Making	13
	3.3.	Optimization techniques	16
<u>Chapter 4</u> :	How 1	the system works	21
Chapter 5:	Engin	eering Drawings	
	5.1.	Final Solution	27
	5.2.	Critical Dimensions for Frame Fit	28
	5.3.	Tyres and Rims	30
	5.4.	Detailed Designs	31
Chapter 6:	Solar	Photovoltaic System	
		Modeling of System	34
	6.2.	Model for Ambient Temperature	35
	6.3.	Calculation of size and performance rates for the	00
	J.O.	P.V. Cell	37
	6.4.	Performance parameters and indicators	39
	6.5.	Determination of wire	40

<u>Chapter 7</u> : Cost Analysis	42
Conclusions	43
References	44
Appendices	

,

DESIGN OF A POWERED BICYCLE

by

Kallis Marios

Project Report
Submitted to
The Department of Mechanical Engineering
Of the Higher Technical Institute
Nicosia Cyprus
In partial fulfillment of the requirements
for the diploma of

TECHNICAL ENGINEER

In

MECHANICAL ENGINEERING

July 2000

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my project supervisor, Mr. L. Lazari, for his help, advice and guidance he showed through this project.

I would also like to express my thanks to Chief Inspector Prokopis Kitromelides and Inspector Kyriakos Mavri for all the technical information given by them and the personal experience gained through out the project.

Finally I would like to express my thanks to my friend Angelos Stratis, my sister Christina and brother in law Stelios.

This Project is dedicated to my late Grandfather Antonis Konstantinides.