COMPUTER AIDED ANALYSIS OF CONTROL SYSTEMS

By

CHRYSOSTOMOU CHRYSOSTOMOS

Supervisor: Dr M Kassinopoullos

This project is submitted in partial fullfillment of the requirements for the award of the diploma of the Technician Engineer in Electrical Engineering.

Higher Technical Institute
Nicosia, Cyprus

June 1994

SUMMARY

CHRYSOSTOMOU CHRYSOSTOMOS

COMPUTER AIDED ANALYSIS OF CONTROL SYSTEMS

The main objective of this project was the design, construction and testing of various experimental units for laboratory purposes, as well as to write appropriate experiments for computer aided analysis of various control systems.

The experimental units constructed are appropriate, for the analysis of first and second order systems and for the study of compensating networks.

Also a manual with the main instructions required for the use of a computer program is provided.

For the testing of the experimental units, appropriate experiments were written whose procedures were followed step by step and corresponding results were taken. A comparison was made between the experimental and the theoretical results, as well as the results taken from the computer program.

Finally, as it can be observed, the best analysis of control systems is achieved with the aid of the computer.

CONTENTS

Acknowledgements				
Summary Introduction				
1.0. Introduction	10			
1.1. First Order Systems	11			
1.1.1. Theory	11			
1.1.2. Example	21			
1.1.3. Experiment	24			
1.1.4. Experiment Results	30			
1.1.5. Conclusions	39			
1.2. Second Order Systems	40			
1.2.1. Theory	41			
1.2.2. Example	51			
1.2.3. Experiment	54			
1.2.4. Experiment Results	60			
1.2.5. Conclusions	67			
1.3. Construction of experimental unit	68			
2. COMPENSATING NETWORKS	71			
2.0. Introduction	73			
2.1. Compensating Networks	74			
2.1.1. Phase-Lead Network	75			
2.1.2. Phase-Lag Network	80			
2.1.3. Lead-Lag Network	84			
2.1.4. Experiment	89			
2.15 Evneriment Reculte	QE			

	2.1.6.	Conclusions	107
	2.1.7.	Construction of experimental unit	108
3.	PRO	CESS CONTROL	115
	3.0.	Introduction	117
	3.1.	Terminology	118
	3.2.	Proportional control	119
	3.3.	Integral control	121
	3.4.	Proportional plus integral control	122
	3.5.	Proportional plus derivative control	124
	3.6.	Proportional plus integral plus derivative control	126
	3.7.	Obtaining derivative and integral control action	128
	3.8.	Effects of integral and derivative control on system performance	129
	3.9.	Experiment	132
	3.10.	Experiment Results	135
	3.11.	Conclusions	140
4.	POSI	TION CONTROL SYSTEM	141
	4.0.	Introduction	143
	4.1.	Theory	144
	4.2.	Obtaining the Transfer Function of the remote position co	ontrol
		system	147
	4.3.	Experiment	150
	4.4.	Experiment Results	156
	4.5.	Conclusions	160
5 .	COM	PUTER ANALYSIS OF CONTROL SYSTEMS	161
	5.0.	Introduction	163
	5.1.	Getting started	164

	5.2.	Commands	165
	5.3.	Experiment	180
	5.4.	Experiment Results	184
	5.5.	Conclusions	190
RE	FERE	NCES	191
APPENDICES			192