

CIVIL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

WASTEWATER TREATMENT PLANT

PHILIPPOS PHILIPPOU

JUNE 2001

WASTEWATER TREATMENT PLANT

BY

PHILIPPOS PHILIPPOU

Project Report Submitted to The Department of Civil Engineering Of Higher Technical Institute Nicosia - Cyprus In partial fulfillment of the requirements For the diploma of

TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

Project Supervisor : Mr. N. Kathidjiotes Lecturer at H.T.I.

TO MY ONE AND ONLY TRUE LOVE, MARGARITA.

TABLE OF CONTENTS

	Pages
Acknowledgments	
Summary/Objectives	
CHAPTER 1 INDRODUCTION	1 - 2
CHAPTER 2 2. WASTEWATER CHARACTERISTICS	3 - 17
2.1 Physical characteristics	5 - 7
2.1.1 S.S	5
2.1.2 Turbidity	6
2.1.3 Color	6
2.1.4 Taste and Odor	7
2.1.5 Temperature	7
2.2 Chemical Characteristics	8 - 13
2.2.1 T.D.S	8
2.2.2 Alkalinity	8 - 9
2.2.3 Hardness	9
2.2.4 Fluoride	9
2.2.5 Metals	10
2.2.6 Organics	10 - 11
2.2.7 Nutrients	11 - 13
2.3 Biological Characteristics	14 - 17
2.3.1 Pathogens	14 - 17

2.3.2 Pathogen Indicators	17
CHAPTER 3 3. LABORATORY TESTS	18 - 23
3.1 Dissolved Oxygen	19 - 20
3.2 B.O.D	20
3.3 C.O.D	20 - 21
3.4 TS and VS	21
3.5 30 – Minute Settling Test	21-22
3.6 Nutrients	22
3.7 pH	23
CHAPTER 4	24 - 48
4. TREATMENT PROCESSES	
4.1 Primary Treatment	26 - 34
4.1.1 Preliminary Treatment	26 - 32
4.1.2 Primary Sedimentation	33 - 34
4.2 Secondary Treatment	35 - 44
4.2.1 Aerobic Biological Processes	35 - 42
4.2.2 Anaerobic Biological Processes 4	43 - 44
4.3 Tertiary Treatment	44 - 45
4.4 Design Criteria	46 - 48
4.4.1 General Considerations	47 - 48
CHAPTER 5	49 - 57
5. THE ACTIVATED – SLUDGE PROCES	SSES
5.1.1 Modifications of the Activated –	Sludge
Processes	50 - 53

5.1.2 Methods of Aeration 54
5.1.3 Secondary Clarifier 54 - 55
5.1.4 Disinfection of Effluents 56
5.2 Sludge Treatment and Disposal 57
CHAPTER 6
6. DESIGN OF AN ACTIVATED – SLUDGE
PLANT
6.1 Location of Plant 59 - 60
6.2 Description of Proposed Plant 61
6.3 Design Procedure 62 - 71
CHAPTER 7
7. BASIC CONSIDERATIONS WASTEWATER
TREATMENT
7.1 Wastewater Reuse 73 -77
7.2 Environmental Impact Assessment 78
REFERENCES

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and thanks to those who have helped me prepare this project.

Firstly I would like to thank my supervisor Mr. N. Kathidjiotes Senior Lecturer, of Higher Technical Institute for his helpful guidance during the preparation of this project.

Then I would like to thank my sister, Maria for her help with computers. Also, I would like to thank Costas Tsiarkezou for being very helpful.

Most of all, I would like to thank a real friend, Stavros Makris for being always at my side helping, supporting and advising me.

Last, but not least, I would like to thank my beloved mum and dad for their tremendous support.

LIST OF FIGURES

Figure 1: Generalized nitrogen cycle

Figure 2: Wastewater Treatment Process

Figure 3: Simple manually raked screen

Figure 4: Mechanically raked screen

Figure 5: Details of velocity controlled grit channel

Figure 6: Details of comminutor

Figure 7: Typical primary clarifiers

Figure 8: Typical RBC units

Figure 9: Trickling filter parts

Figure 10: Typical activated-sludge systems

Figure 11: Common variations of the activated-sludge process

Figure 12: Water treatment stages

LIST OF TABLES

Table 1: Common Waterborne pathogens

- Table 2: Recommended microbiological quality forWastewater use in agriculture
- Table 3: Wastewater quality standards for irrigation in Cyprus

Table 4: Wastewater quality standards for European countries

LIST OF PHOTOS

Photo 1: Illustration of the typical sources of water

Photo 2: The Aerated Lagoon of Anthoupolis Treatment Plant

Photo 3: Apostolos Loukas Treatment Plant

Photo 4: Mental Hospital – Athalassa Sewage Treatment Plant

Photo 5: Athalassa Pond

Photo 6: Eastside of the Ezousa river territory

Photo 7: The Ezousa river territory

Photo 8: Westside of the Ezousa river territory

HIGHER TECHNICAL INSTITUTE NICOSIA – CYPRUS

CIVIL ENGINEERING DEPARTMENT Academic year 2000/01 Diploma Project No. C/936

TITLE: WASTEWATER TREATMENT PLANT

SUMMARY/OBJECTIVES

The objectives of this project are:

- 1. To state wastewater qualities, treatment objectives and principles.
- 2. To carry a planning study including an environmental impact study.
- 3. To design a small scale secondary treatment plant.
- 4. To discuss wastewater reuse potential.