HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A SOLAR MEATING SYSTEM FOR A HOUSE

M / 878

BY: GOGAKIS CHRISTOS

JUNE 2000

DESIGN OF A SOLAR HEATING SYSTEM FOR A HOUSE

BY: Gogakis Christos

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

In

MECHANICAL ENGINEERING

June 2000

CONTENTS		Page
1. Heat requirements:		2
1.1	Overall coefficient of heat transmission	3
1.2	Calculation of U-value	5
1.2.1	U-value of external wall	6
1.2.2	U-value of concrete	7
1.2.3	U-value of ceiling	9
1.2.4	U-value of floor	12
1.2.5	U-value of another wall	13
1.2.6	U-value of windows and doors	15
1.3	Heat load	16
1.4	Calculation of heat loads	16
1.4.1	Calculation of building dimensions	16
1.4.2	Heat losses	21
1.4.3	Hot water services for the house	22

2. Solar energy:

23

2.1	Introduction to solar energy	23
2.2	The history of the solar energy	23
2.3	Situation in countries around the world	24
2.4	Solar heating theory	24
2.4.1	Solar constant	24
2.4.2	Insolation	25
2.4.3	Efficiency	25
2.4.4	Solar fraction	25

2.4.5	Wavelength conversion	25
2.4.6	Greenhouse effect	25
2.4.7	Black body	26
2.4.8	Selective surface	26
2.4.9	Tracking collectors	26
2.4.10	Concentrating collector	26
2.4.11	Diffuse radiation	27
2.4.12	Conduction	27
2.4.13	Convection	27
2.4.14	Radiation	28
2.5	Flat plate solar collectors	28
2.6	Collector placement	29
2.6.1	Calculation of optimum tilted angle	29
2.6.2	Collector arrangement	31
2.6.3	Parallel arrangement	31
2.6.4	Series arrangement	32
2.7	Flat plate solar collector components	33
2.8	Types of flat plate solar collector	35
2.9	Construction of flat plate collectors	36

3. Floor heating:

40

3.1	Is radiant floor heating new?	40
3.2	What exactly is radiant energy?	40
3.3	How radiant floor heating works?	42
3.4	Why is radiant floor so comfortable?	43
3.5	Advantages of floor heating	43
3.6	What happens if a leak occurs in the floor?	45
3.7	Disadvantages of floor heating	45

3.8	Design aspects	46
3.8.1	Materials and methods of construction	46
3.8.2	Floor covering materials	47
3.8.3	Insulating materials	47
3.8.4	Pex-pipes	48
3.8.5	Characteristics of Pex floor heating pipes	50
3.8.6	Minimum bending radius of Pex-pipes	50
3.8.7	Arrangement of heating pipes in floor heating	51
3.8.8	Pipe spacing	53
3.8.9	Installation of heating panels	55
3.8.10	Border insulation	56
3.8.11	Expansion joints	57
3.8.12	Oxygen diffusion	58
3.8.13	Manifold location	58
3.8.14	Operation of heating system	60
4. Selec	tion and sizing of equipments:	61
4.1	Sizing of pipes and pump selection, used in	
	the collection system	61
4.1.1	Pressure drop in the index circuit	61
4.1.2	Pressure drop in the collectors	62
4.1.3	Pressure drop in pipes of the collectors	62
4.1.4	Total pressure drop in collection system	63
4.1.5	Pump sizing for the collection system	63
4.2	Sizing of pipes and pump selection, used in	
	the storage –distribution system	64
4.2.1	Pressure drop from the engine room to the manifold	64
4.2.2	Pressure drop in the floor heating loops	65

4.2.3	Volume flow and flow rate required in circuit	66
4.2.4	Pressure drop in the storage tank and boiler	68
4.2.5	Total pressure drop in storage system	68
4.2.6	Pump sizing for the storage system	68
4.3	Sizing of storage tank, boiler, burner	69
4.3.1	Sizing of storage tank	69
4.3.3	Sizing of boiler and burner	70
4.3.4	Controllers	70
4.3.5	Expansion tanks	71
4.3.6	Three way and four way valves	71
4.3.7	Automatic air vents	71
4.4	Selection of flat plate solar collectors	71
4.4.1	Results	7 3
4.5	Collector arrangement	76
4.6	Calculation of the length of each series of collector panels	76
4.7	Calculation of the distance between two rows of collectors	77
4.8	Calculation of the distance between the house and the	
	collectors	78

5.General information:

-	-
7	9
1	/

5.1	Instructions for the proper installation	80
5.1.1	Manifolds	80
5.1.2	Engine room	81
5.1.3	Thermostats	83
5.1.4	Collectors	84
5.1.5	Floor heating	84
5.1.6	Expansion tanks	84

6. Cost estimate:

6.1	Cost estimate of the whole system	85
6.2	Cost estimate without solar energy	86
6.3	Cost estimate of radiator system	87
6.4	Calculation of fuel savings	87
6.4.1	Amount of fuel saved	88
6.5	Conclusions	89

,

ACKNOWLEDGEMENTS:

By the end of this project I would like to express my sincere thanks and acknowledgement both to my instructor and supervisor Dr. I. Michaelides of the Higher Technical Institute and to Mr. G.Roditis of the Ministry of Commerce and Industry (energy section), for their guidance and advice throughout my project.

Finally I would like to thank my parents for their support and guidance throughout these years.

Gogakis Christos

PROJECT NUMBER: M/878

TITLE: 'DESIGN OF A SOLAR HEATING SYSTEM FOR A HOUSE'

Objectives:

1. To calculate the heat requirements for space heating and hot water services for the house.

2. To design a suitable system for the collection and storage of low temperature solar energy to satisfy the heat requirements of the building.

3. To determine the optimum size of the solar collector, storage unit, pumps, piping and other equipment and accessories involved in the system, including all necessary instrumentation and controls.

4. To prepare detailed drawings showing clearly the system layout and components.

5. To conduct a cost estimate and compare it with that of a conventional heating system without solar.