Higher Technical Institute

LLECTRICAL ENGENFERING DEPARTMENT

DIPLOMA PROJECT

DEVELOPMENT OF A MICROPROCESSOR CONTROLLED HEARING TEST FACILITY

> By KAMBOURIDES MICHALIS E/1110

> > **JUNE 1998**

Development of a Microprocessor Controlled Hearing Test Facility

Project report submitted by KAMBOURIDES MICHALIS

to the

Electrical Engineering Department

Nicosia Cyprus

in partial fulfilment of the requirements

for the Diploma of

TECHNICAL ENGINEER

in

ELECTRICAL ENGINEERING

JUNE 1998

HIGHER TECHNICAL PROJECT NO

ANIC

Contents

		Page
Conten	ts	1
Acknow	vledgements	3
Summa	iry	4
Introdu	iction	5
Chapte	er 1: 8031 Microprocessor controller	
1.1.	Introduction	6
1.2.	The 80C31 microprocessor controller as a circuit element	6
1.2.1.	Intel's 80C31 CMOS microprocessor (IC1)	6
1.2.2.	Demultiplexing (IC2)	7
1.2.3.	Address decoding	7
1.2.4.	Memory (IC3)	8
1.3.	Alphanumeric Liquid Crystal Display	9
1.3.1.	Interface of the LCD module with the 8031 microprocessor	9
1.4.	Keyboard unit	12
1.4.1.	Description	12
1.4.2.	Interface	12
1.5.	Reset	12
1.6	Voltage supply	13
1.7	Clock generator	14
1.8	Conclusions	15
Chapte	r 2: MSM6388 Recorder Circuit	
2.1.	Introduction	17
2.2.	The MSM6388 solid-state recorder as a circuit element	17
2.2.1.	The features of Oki's MSM6388 Solid State Recorder	17
2.2.2.	Recording time and memory capacity of MSM6388 IC	18
2.2.3.	Analog input amplifier circuit of MSM6388 IC	18
2.2.4.	The Low Pass Filter (LPF) of MSM6388 IC	18
2.2.5.	Analog (voice) output	19
2.2.6.	Clock generator	19
2.3.	Inputs and outputs pins of the recording circuit	20
2.4.	Conclusions	20
Chapte	r 3: VU Meter Circuit	
3.1.	Introduction	22
3.2.	The LM3916 Dot/Bar Display Driver IC as a Vu meter element	22
3.3.	The LM3916 IC Features	22
3.4.	The external connection of the LM3916 IC	23
3.5.	Conclusions	24
Chapte	er 4: Volume Control Circuit	
4.1.	Introduction	25
4.2.	The LM386 low-voltage Power amplifier	25

4.3.	The external connection of the LM386 IC	25
4.4.	The Multiplexing of the voice volume	26
4.5.	Conclusions	26
Chap	oter 5: Power Amplifier Circuit	
5.1.	Introduction	28
5.2.	The TDA2009A Dual 10W+10W Power amplifier	28
5.3.	The external connection of the TDA2009A IC	28
5.4.	Conclusions	29
Chap	oter 6: Programming the Microprocessor	
6.1.	Introduction	30
6.2.	Display Routines	30
6.3.	Main Program	31
6.4.	Play Subroutine	32
6.5.	Recording Subroutine	33
6.6.	Play Wn subroutine	34
6.7.	Play Random subroutine	35
6.8.	Recording Wn subroutine	36
6.9.	Conclusions	37
Chap	oter 7: PCB Construction	
7.1.	Introduction	38
7.2.	Preparation of the circuit	38
7.3.	Preparation of plates	38
7.4.	Application of photoresistive layer	38
7.5.	Exposure	43
7.6.	Developing	43
7.7.	Etching	43
Costi	ng	44
Conclusions		46
Bibli	ography	47
Appe	ndix A : Assembly program	49
Appendix B : IC Specifications & Instruction sets		

. . .

Acknowledgements

I would like to express my gratitude to my project supervisor Mr. Spyros Spyrou for his helpful guidance and valuable assistance throughout the project.

I would also like to express my thanks to any other person who any way helped me throughout the project.

M. Kambourides

Summary

This project deals with the design of a system which stores words in his memory and it playbacks them, taken measurements in who many dB we hear them. All these actions are shown on LCD display to the users, who can choose the next action from a keyboard.

The whole system is designed by the aid of a Computer Aided Design (CAD) program. First was designed the recorder circuit and then the μP system with its peripherals (keyboard, alphanumeric display, etc.). The reason that we make first the recorder circuit is for the complexity of it and the problem that we have to control it.

Software was written for the operation of the system as required and stored in system's EPROM. An 8051 assembler was used along with an 8051 disassembler, an EPROM programmer.

The operation of the whole system was tested using Logic Analyzer (disassembler) and oscilloscope.

The system was fully operating as was designed.

Introduction

This project deals with the development of a system which stores words in his memory and it playbacks them, taken measurements in who many dB we hear them. Such a system was studied, designed and constructed along with the appropriate software, having in mind the characteristics of the required bandwidth that we wont, and the available memory.

In the beginning of the project we try to store the words in RAM but the RAM needed to store three words with sampling rate 20KHz is bigger that 1M-byte and none 8-bit microprocessor can control so mush memory. For this reason our try to use RAM is been disqualify and we approach the Digital Signal Processing IC's (DSP).

An IC like this is the MSM6388 of Oki Semiconductors that has his own microprocessor, a built-in 12bit A/D converter, built-in 12bit D/A converter, built-in microphone pre-amplifier, built-in low-pass filter and the ability to control up to four serial voice registers of 1Mbit each.

For the control of the voice recorder we use the 8031 μ P that he has his own RAM and input/output ports that we easy connect the peripherals (keyboard, alphanumeric display, etc.) as we presented in this project.

All the circuits PCB's that we mentioned above, are designed by the use of the TraxMaker of Microcode Engineering and are been calibrated and tested using appropriate laboratory instruments such as Logic Analyzers, Oscilloscopes, Assemblers, etc.