HIGHER TECHNICAL INSTITUTE NICOSIA - CYPRUS

ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

TRANSIENT STABILITY ANALYSIS OF A POWER SYSTEM

E / 800

PANARETOU S. NICOS

JUNE 1992

ACKNOWLEDGEMENTS

First I would like to express my thanks to the Electricity Authority of Cyprus who gave me the opportunity to work in their Computer Center.

I would like to express my sincere thanks and appreciation to my project external assessors for their quidance, assistance and great help given to me throughout the project period

Mr. TH. HADJICOSTAS Mr. S. S. PAPHITES

I also would like to express my appreciation for the valuable advice afforded to me by my supervisor, lecturer in Electrical Engineering Department in H.T.I.

Mr. Ch. CHRYSAFIADES

N. PANARETOU

JUNE 1992

Planning the operation, improvement and expansion of power system requires studies of the stability of the system and protection against lightning and switching surges and against short circuits.

Interconnection of systems increases the amount of current which flows when a short circuit occurs on a system and breakers are required, able to interrupt large current. The disturbance caused by a short circuit on one system may spread to interconnected systems and instability results to all of the system unless proper relays and circuit breakers are provided at the point of interconnection.

The main purpose of this work is to conduct transient stability studies on VAX computer to determine the appropriate minimum relay operation times under fault conditions E.A.C. transmission on the system. By controlling the switching operation and the sequence of fault, swing curves of machines were plotted on common axis and conclusions were drawn, on the stability of E.A.C. transmission system. The examination was carried out under 1.00 sec time period study and during this time it was obvious when the system was stable or unstable.

PAGE

ACKNOWLEDGEMENTS					
SUMMARY					
INTRODUCTION					
0.1	STABILITY				
0.2	STEADY STATE STABILITY-DYNAMIC STABILITY				
0.3	TRANSIENT STABILITY				
0.4	LOAD FLOW				
0.5	USE OF DIGITAL COMPUTERS				
CHAPTER 1: THEORY					
1.1	SYNCHRONISM	1			
1.2	STEADY STATE STABILITY LIMIT	3			
1.3	TRANSIENT - STABILITY-EQUAL-AREA				
	CRITERION	5			
1.4	SWING EQUATION	11			
1.5	METHODS OF INCREASING STABILITY	15			
1.6	LOAD FLOW	17			
CHAPTER 2: SYSTEM PROTECTION					
2.0	SYSTEM PROTECTION	21			
2.1	EXAMINING PROTECTION SYSTEMS	23			
2.2	ZONES OF PROTECTION	25			
2.3	BACK-UP PROTECTION	26			
2.4	TRANSFORMER PROTECTION	29			
2.5	GENERATOR PROTECTION	30			
2.6	DISTANCE PROTECTION	32			
2.7	FEEDER PROTECTION	32			
2.8	BUSBAR PROTECTION	33			

42

CHAPTER 3: NETWORK REPRESENTATION	
3.0 NETWORK REPRESENTATION	34
3.1 OVERHEAD LINES AND CABLES	34
3.2 TRANSOFRMER REPRESENTATION	35
3.3 LOAD REPRESENTATION	36
3.4 PER-UNIT SYSTEM	37
3.5 REPRESENTATION OF SHUNT ELEMENTS	38
CHAPTER 4: INTERPRETATION OF RESULTS	39

CHAPTER 5: CONCLUSIONS

APPENDIX I: RESULTS AND GRAPHS

APPENDICES

I.1 CASE 1	SOTIRA - DHEKELIA	132KV
I.2 CASE 2	DHEKELIA - PROTARAS	132KV
I.3 CASE 3	PROTARAS - DHEKELIA	132KV
I.4 CASE 4	DHEKELIA - LARNACA	132KV
I.5 CASE 5	F.I.Z DHEKELIA	132KV
I.6 CASE 6	DHEKELIA - F.I.Z.	132KV
I.7 CASE 7	POLEMIDIA - MONIPS	132KV
I.8 CASE 8	POLEMIDIA - PAPHOS	(66KV)
I.9 CASE 9	PAPHOS - POLEMIDIA	(66KV)
I.10 CASE	10 DHEKELIA - FAMAGUSTA	(66KV)
I.11 CASE	11 OROUNDA - ATHALASSA	(66KV)
I.12 CASE	12 ATHALASSA - OROUNDA	(66KV)
I.13 CASE	13 ATHALASSA - OROUNDA	(132KV)
I.14 CASE	14 LARNACA - DHEKELIA	(132KV)
I.15 SINGLE	E LINE DIAGRAMS	

APPENDIX II: USER GUIDE