<u>Geotechnical Problems in</u> <u>Larnaca area</u>

Project Report Submitted by George Philippides

> in part satisfaction of the award Diploma of Technician Engineer in Civil Engineering of the Higher Technical Institute, Cyprus

Project Supervisor : Demetris Andreou Lecturer in Civil Engineering at H.T.I.

External Assesor : Andreas Michaelides Hydrogeologist

Type of Project : Individual

June 1989

ALGHER | BOOR NO. TECHNICAL INSTITUTE

1.0 <u>SUMMARY</u>

The scope of this project is to outline all the problems encountered in foundation engineering generally in Cyprus and in particular in the area of Larnaca, and to suggest ways to overcome them.

The whole work is divided into several chapters. The "Geotechnical Engineering" chapter refers to the scope for geotechnical engineering and its practice.

The types, purpose, design criteria and failures of foundations are stated in the "Foundation" chapter. In this chapter the foundation types used in Cyprus and the problems encountered in foundation engineering are also discussed.

Site investigation and Earthquake Engineering are of great importance in foundation engineering. Chapters 5 and 6 refer to them. Chapter 7 refers to the project area, its geographical description, geology and geotechnical hazards.

Piles and diagragm walls are some of the methods considered overcoming the geotechnical hazards encountered in Larnaca area and elsewhere. All the methods are discussed in chapter 8.

Chapter nine states the problematic grounds in Larnaca area and the solution employed to one of these. Visits to the site and photos of this case were necessary for better presentation of the situation.

The study is concluded with comments on issues and problems related to foundations that one should be aware off in Larnaca area.

CONTENTS

Page

1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	GEOTECHNICAL ENGINEERING	4
	3.1 The scope of geotechnical engineering	4
	3.2 Practice of geotechnical engineering	4
4.0	FOUNDATIONS	6
	4.1 Purpose of foundations	6
	4.2 Types of foundations	6
	4.2.1 Shallow foundations	6
	4.2.2 Deep foundations	9
	4.3 Failures of foundations	13
	4.4 Design criteria	14
	4.5 Criteria for satisfactory performance	15
	4.6 Foundation types, used in Cyprus	15
	4.7 Problems encountered in Foundation	
	Engineering	17
	4.7.1 Settlement	17
	4.7.2 Foundation heave	19
	4.7.3 Swelling of soils	19
	4.7.4 Erosion	20
	4.7.5 Ground subsidence and collapse	20
	4.7.6 Earthquakes	20
5.0	SITE INVESTIGATION	22
6.0	EARTHQUAKES	25
	6.1 Earthquake and its origin	25
	6.2 Site seismicity	26
	6.3 Effects of geological setting	27
	6.4 Seismic zoning	29

	6.5 Guidelines for earthquake resistant	
	design	30
7.0	PROJECT AREA	31
	7.1 Brief Geographical Description	31
	7.1.1 Physical setting of Cyprus	31
	7.1.2 Physical description of project area	32
	7.2 Regional Geology	32
	7.3 Engineering Geology of soils in Larnaca	34
	7.3.1 Materials	34
	7.3.1.1 Fill	35
	7.3.1.2 Reworked Marl	35
	7.3.1.3 Recent Marine Deposits	36
	7.3.1.4 Marine Terrace Deposits	38
	7.3.1.5 Havara	40
	7.3.1.6 Kafkalla	41
	7.3.1.7 The pliocene Marl	41
	7.4 Geotechnical hazards anticipated in the	
	study area	42
	7.4.1 Seismic hazard	42
	7.4.2 Seaweed-rich Recent Marine deposits	43
	7.4.3 Man made cavities	43
	7.4.4 Solution cavities	44
	7.4.5 Flooding	44
	7.4.6 Aggressive Groundwater	45
8.0	WAYS TO OVERCOME THE ANTICIPATED PROBLEMS	47
	8.1 Piles	47
	8.2 Retaining walls for deep foundations	51
	8.3 Dewatering and action of water on	
	substructure	55
	8.4 Other methods employed in solving	
	foundation problems	56

	PROBLEMATIC GROUNDS AND THE SOLUTION EMPLOYEED
	TO ONE OF THEM
	9.1 Problematic grounds 58
	9.2 Case history 60
10.0	CONCLUSIONS
	REFERENCES