PRODUCTION OF 'STRENGTH CURVES' FOR LIMESTONE AGGREGATES (diabase)

PROJECT REPORT SUBMITTED BY: TSAGGARY EMILY 3CE2 &

PANAYIOTOU PANAYIOTIS 3CE2

PROJECT REPORT SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING OF THE HIGHER TECHNICAL INSTITUTE NICOSIA CYPRUS

in partial fulfilment of the requirements for the diploma of TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June1999

Introduction

Concrete either reinforced or plain is the most widely used construction material. Judging from world trends, the future of concrete looks even brighter because for most purposes it offers suitable engineering properties at low cost, combined with energy-saving and ecological benefits. It is therefore desirable that engineers know more about other building materials.

In spite of concrete's apparent simplicity, it has a highly complex structure; therefore, the structure-property relations that are generally so helpful in the understanding and control of material properties cannot be easily applied. Concrete contains a heterogeneous distribution of many solid components as well as pores of varying shapes and sizes which may be completely or partially filled with alkaline solutions.

Compared to other materials, the structure of concrete is not a static property of the material. This is because two of the three distinctly different components of the structure, the bulk cement paste and the transition zone because the aggregate and the bulk cement paste-continue to change with time. In this respect, concrete resembles with wood and other living systems. Strength and some other properties of concrete depend on the cement hydration products, which continue to form for several years. Although the products are relatively insoluble, they can slowly dissolve and recrystalline in moist environments, thus imparting to concrete the ability to heal microcracks.

Generally there are two overall criteria for good concrete. Concrete must be satisfactorily in its hardened state and also in its fresh state while being transported from the mixer and placed in the formwork. The requirements in the fresh state are that the consistence of the mix be such that it can be compacted by the means desired without excessive effort, and also that he mix be cohesive enough for the method of placing used not to produce segregation with a consequent lack of homogeneity of the finished product.

The usual primary requirement of a good concrete in its hardened state is a satisfactory compressive strength. This is aimed at not only so as to ensure that the

concrete can withstand the prescribed compressive stress but also because many other desired properties of concrete are related with high strength.

The objective of this particular project was to produce 'strength curves' for limestone aggregates. There are many factors that effect the strength of the concrete mix; each of them is discussed separately in the second part of the project. The main factor that effects the strength of the concrete mix is the water to cement ratio. To see the effect of the water to cement ratio we prepared seven mixes of different ratios and we produced a graph indicating the results. From the graph we can clearly see the relation of the strength with W/C and compare each other. The tables and the graph are attached in the experimental part of the project.

CONFINED

Introduction	
Acknowledgments	
Summary	
1.0 Cement	1
1.1 Termination of Cement	1
1.2 Types of Cement	1
1.2.1 Portland Cements	1
1.2.1.1 Normal Portland Cement	1
1.2.1.2 Rapid hardening Portland Cement	2
1.2.1.3 Extra rapid hardening Portland Cement (E.R.H.P.C.)	3
1.2.1.4 Low heat Portland Cement (L.H.P.C.)	3
1.2.1.5 Sulphate resisting cement	4
1.2.1.6 White Portland cement (W.P.C.)	4
1.2.1.7 Colored cements	5
2.1.8 Portland Blastfumace cement (P.B.C)	5
1.2.1.9 Supersulphate cement	6
1.2.2 High Alumina Cement	6
1.2.3 Pozzolanas	6
1.3. Manufacture of Portland Cement	7
1.4. Cement Storage	8
1.5. Setting	8
1.6. Hardening	9
1.7. Hydration of Cement	9
1.7.1 Mechanism of hydration	10
1.7.2. Heat of Hydration	10
1.8. Fineness of Cement	11
1.9. Tests of Portland Cement	12
1.10. Stiffening	12
1.11. Influence on the properties of the mix	12
2.0. AGGREGATES	13
2.1 Introduction	13
2.2 General classification of aggregates	14
2.3 Properties of aggregates	15
2.3.1 Strength of aggregates	15
2.3.2 Size of aggregates	16
2.3.3 Particle shape and texture	18
2.3.4 Specific gravity	19

2.3.5 Moisture content of aggregate	20
2.3.6 Bulk density and bulking	20
2.3.7 Cleanliness	21
2.3.8 Porosity and absorption	22
2.3.8 Forosity and absorption 2.4. Lightweight aggregates	22
3.0 CONCRETE	24
	24
3.1 Introduction	26
3.2 Shrinkage and creep	27
3.3 Workability 3.3.1. The main factors effecting workability	28
3.3.1. The main factors checking workshills	28
3.3.2. Measurement of workability	28
3.4Mixing of concrete	29
3.5 Mechanical Strength of concrete	29
3.6 Durability	30
3.7 Permeability	32
3.8 Fire resistance	33
3.9 Chemical attack	33
3.9.1. Sulfates in ground water	34
3.9.2. Sea water	34
3.9.3. Acid attack	34
3.9.4. Alkali/aggregate reaction	35
3.10 Effects of frost on fresh concrete	35
3.10.1 Freezing conditions occur before initial set	35
3.11 Frost attack of hardened concrete	36
3.12 Bleeding	37
4.0 STRENGTH OF CONCRETE	37
4.1 Generally	38
4.2 The main factors that affect the strength of concrete	39
4.2.1. Water/Cement ratio	39
4.2.2. Type of cement	40
4.2.3. Compaction	40
4.2.4. Mixing water	41
4.2.5. Aggregate type	42
4.2.6. Temperature	43
4.2.7. Admixtures	44
4.2.8. Moisture movement	44
4.2.9. Aggregate/cement ratio	44
4.2.10 Age	45
4.2.11. Testing Procedure	45
4.3. Flexural and indirect tensile stresses	46
4.4. Characteristic strength	46
4.4. Characteristic strength 4.5. Relationship between the compressive and tensile strengths	46
4.6. Failure modes in concrete	47
4.7. Curing of concrete	48
5.0 CONCRETE MIX DESIGN	

5.1. Introduction	48
5.2. Scope and method of designing a normal concrete mix	49
5.2.1. Scope of designing normal concrete mixes	49
5.2.2. Method of designing normal concrete mixes	49
5.3. Principles of mix design	50
5.4. Quality control and concrete production	51
5.4.1. Quality control	51
5.4.2. Concrete production	52
5.4.2.1. Cost	53
5.4.3. Trial mixes	53
6.0 EXPERIMENTAL WORK	55
6.1. Objectives	55
6.1.1. Presentation of the results	55
7.0 EXPERIMENTS	56
TRIAL MIXES	67
CONCLUSIONS	81
A BETTER PRODUCT IN THE FUTURE	83
APPENDICES	