STRUCTURAL CONCRETE REPAIR TECHNIQUES AND MATERIALS

by

CHARALAMBOUS SAVVAS & GEORGIADES CHARALAMBOS

Project Report Submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia Cyprus in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 1993

20

ACKNOWLEDGMENTS

We acknowledge with gratitude the willing co-operation and assistance receive from Mr. K. Anastasiades project supervisor and lecturer in Civil Engineering at Higher Technical Institute, and other organization connected with the building industry.

Finally we expressed our thanks to those who have given us all the necessary guidance and help to write the Project.

INTRODUCTION

Concrete is a mixture of cement, sand (fine & coarse aggregates), gravel and water, under certain proportions in order to prepare concrete of different compressive strength.

Concrete in some guise has been used for thousands of years. The use of structural reinforced concrete, made with Portland cement, dates back to the middle of the last century, gaining momentum at the turn of the century and increasing sharply after the 1939-45 war, when steel was in short supply.

Reinforced concrete has been considered a highly durable structural material requiring little or no maintenance. Furthermore this durability extends to most conditions and climates. In recent years problems with all types of reinforced concrete structures have tarnished that the design, mixing placing and curing of concrete require greater attention. In many instances concrete requires protection immediately after construction.

The poor workmanship, bad quality of concrete, weather conditions, corrosion of the reinforcement, chemical attack, fire, earthquakes, and also structural reasons contribute to the defects and the damages on the structures.

In Cyprus another reason for the damages is the bad quality of material we used and especially aggregates and cements since 1974 when the Turkish invasion took place and as a consequence the building industry lost its sources of cement and aggregates in this project we are dealing with the reasons of these damages and on the types of failures which take place. We are also dealing with the techniques and the different materials used for the repair of structures that are built at from reinforced concrete.

At the end of the project we have some tests carried out on the repair materials.

Contents

	Introduction	1
1	General rules for concrete	2
2	Types of failure & damages suffered by concrete structures	3
2.1	General flowchart of damaged concrete	3
2.2	General Problems of repair and strengthening	4
2.3	Cracks	11
2.4	Fires	20
2.4.5	Corrosion related to reinforced concrete	29
2.5	The weathering of concrete buildings	56
2.6	Earthquakes	60
3	Assessment of structural condition	64
3.1	Flowchart for inspection of corroded steel in concrete	64
3.2	Inspection and testing	65
3.3	Basic equipment for visual inspection and sounding	
	in additional to normal safety equipment	66
3.4	Specialised equipment for more detailed inspecting and testing	67
3.5	Sounding the concrete surface	68
3.6	Testing for carbonation	70
3.7	Determining the chloride content	72
3.8	Estimating the thickness of cover	74
3.9	Measuring crack movement	75
3.10	Estimating in-situ strength	76
3.11	Taking core samples	77
3.12	Making ultrasonic pulse velocity (UPV) measurements	79
4	Techniques for the repair of damaged concrete	80
4.1	Repair methods and materials	80
4.2	Repairing cracks	85
4.3	Live cracks	88

4.4	Longitudinal cracks caused by rusting	89
4.5	Corrosion protection of steel reinforcement	89
4.6	Cathodic protection	94
4.7	Spalled concrete : Hand-applied repairs	101
4.8	Sprayed concrete	114
4.9	Large-volume repairs	115
4.10	Repair to fire-damaged concrete	122
4.11	Factor affecting design (fire protection)	123
4.12	Weathering control	127
4.13	Earth-quakes	128
5	Materials used for the repair of Damaged Concrete Structures	131
5.1	Types of Admixture	131
5.2	Bonding agents	138
5.3	Condensed silica fume	141
5.4	Bonding Aids	141
5.5	Materials for cracks	142
5.6	Joint fillers and sealants	144
5.7	Sealant	145
5.8	Surface treatments	149
6	Tests on repair materials	154
	×	
7	Comments and Conclusions	167
8	References	168