DEVELOPMENT OF COMPUTER PROGRAM FOR ADU

by

PAVLIDES THEODOROS

Project Report Submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia Cyprus in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 1994

ACKNOWLEDGEMENTS

I would like to express my gratitiude to my project supervisor Dr Christis Chrisostomou for his valuable help and guidance on the project.

I would also like to express my gratitude to my family for the understanding and help giving me during these years of studies in the Higher Technical Institute.

Thank you all!

Theodoros Pavlides

SUMMARY

Author: Pavlides Theordoros

Project: Development of Computer Programs for the ADU

Objectives of project:

- 1. To develop computer programs for the Autonomous Data Aquisition Unit.
- 2. To use those programs to obtain data from the shear box test.
- 3. To certify the results obtained by the computer with the ones obtained form mechanical devices.

For the development of the program Microsoft QuickBASIC 4.5 was used.

CHAPTER ONE:

COMPUTERS

1.1	INTRODUCTION TO COMPUTERS	1
1.2	COMPUTER CHARACTERISTICS - COMPONENTS	4
1.3	PROGRAMMING LANGUAGE	5
1.4	FROM BASIC TO QuickBASIC	7

CHAPTER TWO: INSTRUMENTATION

2.1	DEFINITION AND NEEDS FOR INSTRUMENTATION	8
2.2	STANDARDS AND CALIBRATION	9
2.3	THE MEASURING SYSTEM	9
2.3. 1	TRANSDUCER	11
2.3.1.1	TRANSDUCER SENSITIVITY	12
2.3.1.2	CHARACTERISTICS OF AN IDEAL TRANSDUCER	12
2.3.2	SIGNAL CONDITIONING	13
2.3.3	RECORDING AND DISPLAY EQUIPMENT	15
2.3.4	CALIBRATION OF DISPLACEMENT - MEASURING	
	SYSTEM	15

CHAPTER THREE: AUTONOMOUS DATA ACQUISITION UNIT

3.1	INTRODUCTION TO ADU	17
3.1.1	THE ADU OPERATING SYSTEM	17
3.1.2	ONBOARD INTELLIGENCE	17
3.1.3	MULTIPLE TASKS	18
3.1.4	INPUT/OUTPUT FLEXIBILITY	18
3.1.5	PHYSICAL SPECIFICATION	18
3.2	PROGRAMMING OF ADU - ADOS	19
3.2.1	SOME SHORT NOTES ON USING ADOS	19
3.2.2	FIRMWARE	19
3.2.3	REVIEW OF ADOS COMMANDS	23
3.4	BASIC ADU OPERATION	56
3.4.1	RESETTING THE ADU	56
3.4.2	THE CONCEPT OF A CHANNEL	56
3.4.2.1	CONTROL CHANNELS	57
3.4.2.2	ADU CLOCK CHANNEL	57
3.4.3	SETTING-UP INPUT CHANNEL AND SIGNAL	
	CONDITIONING	57
3.4.3.1	WHAT HAPPENS TO AN INCOMING SIGNAL	58
3.4.3.2	CONVERTING INCOMING SIGNALS TO ENGINEE6RING	
	UNITS	58
3.4.4	TASKS	60
3.4.4.1	TYPES OF TASKS	60

3.4.4.2	CONTROLLED	ΒY	TIME					60
3.4.4.3	CONTROLLED	BY	STEPS	IN	А	CONTROL	SIGNAL	61
3.4.4.4	CONTROLLED	MAN	WALLY					61

CHAPTER FOUR:

THE PROGRAM

4.0	MANUAL OF PROGRAM	62
4.1	MAIN MENU	62
4.1.1	COMMUNICATE ADU	62
4.1.2	RESET ADU	63
4.1.3	FIND GAIN OF TRANSDUCER	63
4.1.4	SET-UP CHANNELS	64
4.1.5	SET-UP TASK TYPES	64
4.1.5.1	OPTION 1	65
4.1.5.2	OPTION 2	66
4.1.6	START TESTS	66
4.1.7	RESULTS OF ADU	67
4.1.8	OTHERS	67
4.1.9	EXIT TO DOS	68
4.2	CODING OF PROGRAM	69

CHAPTER FIVE: SHEAR BOX TEST

5.1	INTRODUCTION	131
5.2	THEORY OF SHEAR BOX	131
5.2.1	PRINCIPLE OF SHEAR BOX	131
5.2.2	LIMITATIONS AND ADVANTAGES OF SHEAR BOX	133
5.3	PROCEDURE	136
5.4	RESULTS	137