
THE PRODUCTION OF A VIDEO TO DEMOSTRATE THE **BEHAVIOUR OF AN OVER REINFORCED AND AN UNDER REINFORCED CONCRETE BEAM UNDER FLEXURE**

By **KOUNNAMAS STYLIANOS** THEODOROU STAVROS YIANNOUKOS LOUKAS

Project Report Submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia-Cyprus in partial fulfillment of the requirement for the diploma of TECHNICAL ENGINEER

> In **CIVIL ENGINEERING**

> > **JUNE 2008**

INTRODUTION

Cracks on concrete structural members are a usual phenomenon. Crack sizes and formation maybe taken into account in the wrong way. Crack can be a risk indication or just harmless deformations. The degrees of risk of such cracks depend on the member construction and material properties concerning mainly concrete and reinforcement.

•

This project concerns such properties as applied on one of the most significant structural member, which is the beam. The main object is to distinguish between two kinds of beams, of which the main difference is the reinforcement. More specifically one beam with 2Y12 bottom reinforcement and another with 2Y25 bottom reinforcement will be loaded to fail, to obtain the difference in result.

Actually the project consists of the various tests reports accompanied with a video demonstration which is the main partition.

CONTENTS

ACKNO	LEGDEMENT	Pages 2
CONTENTS		3
LIST OF FIGURES		4
LIST OF TABLES		5
INTRODUCTION		6
CHAPTER 1 - OVERAL PROCEDURE		7
<u>CHAPTER 2 – TESTS</u>		8
2.1	CONCRETE TESTS	8
2.1.1	Object	8
2.1.2	Equipment used	8
2.1.3	Procedure	8
2.1.4	Results	11
2.1.5	Calculations	13
2.2	TENSILE TESTS	16
2.2.1	Object	16
2.2.2	Theory	16
2.2.3	Equipment used	16
2.2.4	Procedure	16
2.2.5	Results	17
CHAPTER 3 – BEAM TESTS		19
3.1	Object	19
3.2	Theory	19
3.3	Equipment used	21
3.4	Procedure	21
3.5	Results	22
<u>CHAPT</u>	ER 4 – CONCLUSIONS	23
BIBLIOGRAPHY		24
ATTACHED MATERIAL		25

LIST OF FIGURES

Figure 1.1	Standard simply support apparatus	Pages 7
Figure 1.2	Dial gauge and proving ring	7
Figure 2.1.1	Cube test apparatus	9
Figure 2.1.2	Balance	9
Figure 2.1.3	Standard deviation graph for 7 days cubes	15
Figure 2.1.4	Standard deviation graph for 28 days cubes	15
Figure 2.2.1	Vernier caliper, center punch and Y12 specimen	17
Figure 2.2.2	Tensile test machine with Y25 specimen	17
Figure 2.2.3	Stress Vs Elongation graph	18
Figure 2.2.4	Steel bar specimens after testing	18
Figure 3.1	Limit state design of structural concrete	20
Figure 3.2	Beam setting on the apparatus	21
Figure 3.3	Dial gauge and proving ring	22

LIST OF TABLES

Table 2.1.1	Cube test results (7 days after casting)	Pages 11
Table 2.1.2	Cube test results (28 days after casting)	12
Table 2.2	Tensile tests results	17
Table 3.1	Beam test readings	22