HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL SERVICES OF A BLOCK OF FLATS

E. 1196

BY: PANAYIOTOU CHRISTOS

JUNE 1999

HIGHER TECHNICAL INSTITUTE PROJECT NO.

2992

8 Kpy

HIGHER TECHNICAL INSTITUDE

ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL SERVICES OF A BLOCK OF FLATS

PANAYIOTOU CHRISTOS

E.1196

JUNE 1999

HIGHER PROJECT NO. TECHNICAL 1NSTITUTE 2992

ELECTRICAL SERVICES OF A BLOCK OF FLATS

Project report by

PANAYIOTOU CHRISTOS

For the fulfillment of the requirements of the diploma for the

TECHNICIAN ENGINEERING

IN

ELECTRICAL ENGINEERING

Project supervisor: Mr. A Georgiou

Type of project: Individual

JUNE 1999

HIGHER PROJECT NO. | TECHNICAL 2992

ACKNOWLEDGEMENTS

I would like to express my thanks to my project supervisor Mr. A

Georgiou for his useful help and supervision during the whole

process of this project.

I would also like to thank everybody who in any way helped me to complete this project.

Panayiotou christos June 1999

CONTENTS

		Page
<u>CHA</u>	PTER 1: PROTECTION AND EARTHING	1 - 14
1.1	Introduction	1
1.2	Overcurrent protection	1 - 2
1.3	Protective devices	2
1.4	Advantages and disadvantages of mcb's	2
1.5	Overload protection for the conductors	2
1.6	Short circuit protection	3
1.7	Operation of the mcb	3 - 5
1.8	Electric shock protection	5 - 6
1.9	EEBADOS method	7
1.10	The residual current circuit breaker(RCCB)	7 - 8
1.11	Protection against fire and harmful thermal effects	8 - 9
1.12	Protection against burns	9
1.13	Protection against overheating	9
1.14	Earthing system	10
1.15	Electrode termination	11
1.16	E.F.L.I(Earth Fault Loop Impedance)	12
1.17	Requirements for protection for special installations	13 - 14
СНА	PTER 2: INSPECTION AND TESTING	15 - 19
2.1	Introduction	15
2.2	Visual inspection	15
2.3	Testing	16
2.3.1	Continuity of ring final circuit conductors	16
2.3.2	Continuity of c.p.c and metallic parts	16 - 17
2.3.3	Insulation resistance	17
2.3.4	Polarity test	17 - 19
<u>CHA</u>	PTER 3: ILLUMINATION DESIGN	20 - 28
3.1	Introduction	20
3.2	Methods of illumination calculations	20 - 21
3.3	Definitions and units	21 - 23
3.4	Aesthetic appearance	23

2.5	Assessed illustration	Page
3.5	Average illumination	23 24
3.6	Glare	25
3.7		26 - 28
3.8	Results of illumination design	20 - 28
<u>CHA</u>	PTER 4: SOCKET OUTLETS AND LIGHTING	29 - 39
4.1	Socket outlet	29
4.1.1	Typical calculations for a ring circuit	29 - 34
4.2	Table for sockets outlets results	34 - 35
4.3	Typical calculations for a lighting circuit	36 - 39
4.4	Table of lighting design results	39
СНА	PTER 5: FIXED APPLIANCES	40 - 48
		,
5.1	Cooker	40 - 42
5.2	Water heater	42 - 44
5.3	Washing machine unit	44 - 46
5.4	Table for fixed appliances	47 - 48
<u>CHA</u>	PTER 6: COMMON USE AREA INSTALLATION	49 - 60
6.1	Introduction	49
6.2	Supply for the lift motor	49
6.3	Lift motor circuit	49 - 51
6.4	Supply to water pump	51 - 53
6.5	Lighting circuit (parking ,EAC room ,stores ,stairs and corridors)	54 - 59
6.6	Table for the loads of the common use area	60
<u>CHA</u>	PTER 7: DISTRIBUTION BOARDS AND SUPPLY CABLES	61 - 67
7.1	Supply cables to distribution boards	61
7.2	Overcurrent protection	61 - 63
7.3	Single line diagram for distribution board 11	64
7.4	Results for the supply cables	65
7.5	Table for balancing	66
7.6	Calculations for the cable size to the M.D.B	67

		Page
<u>CHA</u>	PTER 8: TELEPHONE INSTALLATION	68 - 74
	Introduction Definitions and terms Telephone installation design Conduit schematic Wiring schematic Table of telephone points	68 - 70 70 - 71 72 73 74
СНА	PTER 9: BURGLAR ALARM INSTALLATION	75 - 78
9.1 9.2 9.3 9.4	General Main parts of the intruder system Typical example of the system interconnections Table of the burglar alarm installation	75 75 -76 77 78
СНА	PTER 10: LIGHTNING PROTECTION SYSTEM	79 - 85
10.1 10.2 10.3 10.4	General Need for protection System design Major component parts	79 - 80 80 - 82 82 82 - 85
CHAPTER 11: COSTING		86 - 90
11.1 11.2 11.3 11.4 11.5	Importance of proper costing Methods available Labor cost Cost analysis table Results	86 86 -87 87 88 - 90

GENERAL INTRODUCTION

This project deals with the design of electrical services of a specified block of flats.

The block of flats consists of 3 floors and a parking area on the ground floor. The first floor consists of two flats and the other two floors consist of three flats.

MAIN OBJECTIVES OF THIS PROJECT

- 1) To study the illumination engineering work involved.
- 2) To design the complete electrical services for a specified block of flats which includes the following:
 - (a) Power and lighting
 - (b) Telephone installation
 - (c) Burglar alarm
- 3) Lightning protection system
- 4) To provide all necessary diagrams schedule of materials and costing including labor.

TERMS AND CONDITIONS

- 1) Supply voltage 415/240V, 50Hz, T.T earthing system.
- 2) IEE 16th edition and EAC regulations must be complied with.
- 3) CYTA regulations
- 4) Wiring method: In conduit(method 3)
- 5) Cables: PVC copper cable single core non-armored.
- 6) The efficiency and power factor of high power circuits where not given and must be taken to be 0.8.
- 7) The external earth fault loop impedance is chosen to be 0.5.