HICHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL SERVICES OF A BUILDING

E. 1416

PANAYIOTIS ANTONIOU

JUNE 2007

HIGHER	PROJECT NO
TECHNICAL INSTITUTE	3710

11, 8

r

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL SERVICES OF A BUILDING

E1416

PANAYIOTIS ANTONIOU

JUNE 2007

DESIGN OF THE ELECTRICAL SERVICES OF A BUILDING

PROJECT SUBMITTED BY ANTONIOU PANAYIOTIS V.

TO THE DEPARTMENT OF THE ELECTRICAL ENGINEERING OF THE HIGHER TECHNICAL INSTITUTE NICOSIA-CYPRUS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DIPLOMA OF

TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

JUNE 2007

PROJECT SUPERVISOR: Mr A. GEORGIOU SENIOR LECTURER OF THE ELECTRICAL ENGINEERING DEPARTMENT, H.T.I.

Dedicated specially to my parents for all their support also to my sister and my best friends

CONTENTS

		PAGE
AC	KNOWLEDGEMENTS	i
SUN	MMARY	ii
INTRODUCTION		iii
CH	APTER 1: Illumination design	1
1.1.	Introduction	1
1.2.	Definitions and units	2
1.3.	Rules for energy efficient lighting	2
1.4.	Procedure of the Lumen method	3
1.5.	Typical calculation	4
1.7.	Tables of illumination Design	6
CH	APTER 2: Light Circuit design	, 8
2.1.	Introduction	8
2.2.	Typical calculations	8
2.3.	Table of results	12
CH	APTER 3: Socket outlets design	15
3.1.	Introduction	15
3.2.	Typical calculations	15
3.3.	Table of results	20
3.4.	Residual current device	21
CHA	APTER 4: Fixed Electrical appliances	22
4.1.	Cooker unit calculations	22
4.2.	Washing machine calculations	26
4.3.	Refrigerator calculations	30
4.4. 4 5	Water pump calculations	34
4.6	Lift calculations	58 47
4.7.	Table of results	46
CHA	APTER 5: Storage heaters	48
5.1.	Introduction	48
5.2.	Typical calculations	48
5.3.	Table of results	52
5.4.	Calculations of the supply cables	54
5.5.	Table of results	58
CHA	APTER 6: Air condition design	59
6.1.	Typical calculations	59
6.2.	Table of results	63

CHA	PTER 7: Lightning protection design	65
7.1.	Introduction	65
7.2.	Lightning conductor	65
7.3.	Effects of lightning strike	65
7.4.	Need for protection	66
7.5.	Zone of protection	67
7.6.	Down conductors	67
7.7.	Estimation of exposure risk	67
7.8.	Termination scheme	68
CHA	PTER 8: Fire alarm system	69
8.1.	Introduction	69
8.2.	Manual fire alarm system	69
8.3.	Equipment	69
8.4.	Design	70
8.5.	Cable used	71
CHA	PTER 9: Telephone design	72
9.1.	Introduction	72
9.2.	Definitions and terms	72
9.3.	Earthing	74
9.4.	Installation of the access cable	· 74
9.5.	Installation of conduits	74
9.6.	Conduit schematic	76
CHAI	PTER 10: Inspection and Testing	79
10.1.	Introduction	79
10.2.	Visual Inspection	79
10.3.	Testing	79
CHAI	PTER 11: Distribution board and phase balancing	82
11.1.	Apartments distribution boards	82
11.2.	DB01 (Common distribution board)	86
11.3	Table of Results	89
CHAJ	PTER 12: Materials and Costing	90
12.1.	Introduction	90
12.2.	The Analytical method	90
12.3.	Material cost	91
12.4.	Costing Evaluation	94
CONCLUSIONS		95
REFE	RENCES	96
APPE	NDICES	97

DRAWINGS

ACKNOWLEDGEMENTS

I would like to express my thanks to my project supervisor, Mr. A. Georgiou lecture of the Electrical Engineer Department of H.T.I. for this valuable quittance and assistance for the completion of this project.

Also I would like to thanks all the engineers helped me in providing the necessary information as specifications, technical data, price lists of the equipment used and to all the lectures of H.T.I. who helped me and gave me valuable knowledge to complete the electrical engineering course.

SUMMARY

The purpose of the project is to examine and study the design of electrical services of a building. The whole design must be carried out with care and responsibility as it is directly involved with the safety of people, livestock and property.

The whole design must be carried out in accordance to the IEE wiring regulations 16th edition, EAC and CYTA regulations.

The design of the electrical services of the building is explained in detail to the various chapters of this project. The main body of the project is divided in 12 chapters in order to simplify the study of the project.

At the end of the project appendices are included giving specifications for the devices and equipment used.

And at the end detail architectural drawings are provided showing the locations of the equipment used.

INTRODUCTION

The building is consisting of a ground floor, a two floors and roof. In the ground floor there is parking place and in the others floors are eight apartments four in each floor.

Objective and project

- 1. to design the complete installation of the building which includes the following:
 - Illumination design
 - Lighting design
 - Power design
 - Telecommunication design
 - Lightning protection design
 - Fire alarm system design
- 2. To provide all necessary diagrams schedule of materials and costing including labor.

Terms and Conditions:

- 1. Three-phase 415 VRMS 50 Hz, T.T. earthing system
- 2. Ze: external earth fault loop impedance = 1 Ω
- 3. Ca: Ambient temperature 30 degree Celsius
- 4. General Purpose PVC Copper
- 5. Method 3 cables in conduit
- 6. Architectural drawing will be provided
- The IEE Wiring Regulations 16th Edition as currently amended and the local EAC conditions of supply must be complied with
- 8. The illumination design must be in accordance with the CIBS code
- 9. CUTA requirements to be taken into consideration

Distance show schematic diagram include:

Height of Distribution Board =	1 ,7 m
Height of cooker unit =	1,2m
Height of water heart switch =	1,5m
Height of Double pole switch =	0,5m
Height of socket outlet =	0,5m
Height of switch =	1,5m