HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

AN INVESTIGATION INTO THE CALCULATION OF FLOW OVER VARIOUS SHAPES

MI/1032

ANTONIS KYRIACOU

JUNE 2007

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

AN INVESTIGATION INTO THE CALCULATION OF FLOW OVER VARIOUS SHAPES

M/1032

ANTONIS KYRIACOU

JUNE 2007

AN INVESTIGATION INTO THE CALCULATION OF FLOW OVER VARIOUS SHAPES

by

ANTONIS KYRIACOU

Project submitted to the

Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

In partial fulfilment of the requirements of the

diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

July 2007

ABSTRACT

This project aims to investigate the calculations of flow over various shapes, the understanding of a boundary layer and its variations according to the shape of the object under study and the exact and approximate methods of solving these problems are also studied. We will also see that methods of solving vary according to the type of flow, whether it is laminar or turbulent, and of course the shape of the object. A study of the different types of pressure gradients and the way they effect the flow will also be covered.

Also we will investigate the two main forces which act on a object: drag (which is present on all shapes except flat plates) and lift (which is present on objects according to the shape). Also we will refer to streamlining which is a method of eliminating drag.

To achieve these objectives we will see some basic fundamentals of fluid mechanics and see how we can comprise this knowledge so as to solve different problems and understand the procedure followed.

ACKNOWLEDGEMENTS

I would like to dedicate this project to my family for I would have not succeeded without their help and support throughout my three years at H.T.I.

Also my sincere thanks to my supervisor Dr.Angastiniotis, Lecturer at the H.T.I, for giving me the basic knowledge and fundamental rules of fluid mechanics in order to undertake thus project and all the help and advice he gave me so as to complete my project on time.

CONTENTS

Abstract	i
Acknowledgements	ii
Contents	iii
List of figures	v
List of tables	vi

CHAPTER 1

INTRODUCTION

1.1	Aims and Objectives	1
1.2	Basic Theory and Brief Historical Note	2

CHAPTER 2

BOUNDARY LAYER

2.1	The Boundary Layer Concept	5
2.2	The Methods of Measurement for the Thickness of the Boundary	
	Layer	6
2.3	Methods of Solving a Flat-Plate Boundary Layer	
	I Exact Method Solution	7
	II Approximate Method Solution	12
2.4	Comparison Between Exact and Approximate Methods	15
2.5	Pressure Gradients	15

CHAPTER 3

DRAG, STREAMLINING AND LIFT

3.1	Drag	18
3.2	Streamlining	23
3.3	Lift	25

CHAPTER 4

CONCLUSIONS

4.1	Objectives Part 1	28
4.2	Objectives Part 2	28

REFERENCES

29

LIST OF FIGUERS

	Page
Figure 1.1: Incompressible flow over sphere	2
Figure 1.2 Schematic of a boundary layer	4
Figure 2.1 Boundary layer on a flat plate	5
Figure 2.2 Boundary layer thickness definitions	6
Figure 2.3 Control volume in boundary layer	12
Figure 2.5 Boundary layer across surface with pressure gradients	16
Figure 2.5.1 Non-dimensional profiles for flat plate boundary-layer	17
Figure 3.1 Variations of drag coefficient for Reynolds number for sr flat plate parallel to flow	nooth 21
Fig.3.2 Flow over flat plate normal to the flow	22
Fig.3.3 Flow over flat plate normal to the flow	22
Fig.3.4 Drag coefficient for selected objects	23
Fig.3.5 Effects of thickness to cord ratio on drag of aeroplane strut	24
Fig.3.6 Nearly optimum shape for low-drag strut	24
Fig.3.7 Measurements for typical airfoil	25
Fig.3.8 Effects of the variation of angle of attack	26
Fig.3.9 Pressure distribution on a normal vehicle	27

LIST OF TABLES

Page

Table 2.3 The function $f(n)$ for the laminar boundary-layer	11
Table 2.3.1 Results of the calculation of laminar boundary laye	r flow 14