DESIGN OF THE ELECTRICAL

INSTALLATION SERVICES

OF A HOTEL

Project report submitted by CHRISTOU G. NEDI

in part satisfaction of the award of Diploma of Technician Engineer in Electrical Engineering of the HIGHER TECHNICAL INSTITUTE, CYPRUS.

Project supervisor: Mr. J. Demetriou

Type of Project : Individual

 \checkmark

Group

June, 1989

ABSTRACT

This project deals with the electrical installation design of a hotel. Analytically this project is an electrical design of a hotel including:

(a) Lighting

(b) Power

(c) Standby Supply

This project includes the design procedure, typical calculation examples for each part of the design and also includes the relevant drawings. All the technical and theoretical information are given at the end of the project.

<u>CONTENTS</u>

Page

1

ACKNOWLEDGEMENTS	I
ABSTRACT	II
INTRODUCTION	III

CHAPTER 1

ILLUMINATION

1.0	Introduction	1
1.1	Surfaces	1
1.2	Lighting laws	1
1.3	Glare	2
1.4	Stroboscopic effect	3
1.5	Choice of lamp type	3
1.6	Luminaires	3
1.7	Incandenscent lamps	4
1.8	Fluorescent lamps	4
1.9	Definition of terms-Units	5
1.10	Design Procedure-Lumens method	7
1.11	Actual design	8
1.12	Table of illumination results	10

CHAPTER 2

LIGHTI	ING AND POWER REQUIREMENTS	13
2.0	Introduction	13
2.1	Fundamental requirements for safety	13
2.2	Control of electrical installation	13
2.3	Diversity and maximum demand	14
2.4	Installation of motors	14
2.5	Design procedure	15
2.6	Actual design procedure	20
2.7	Schedule and balancing of distribution boards	51
2.8	Fault level calculations	65

CHAPTE	IR <u>3</u>	
EARTHI	ING	68
3.0	Inroduction	68
3.1	TT system of earthing	68
3.2	Definitions	69
3.3	Protection against Earth leakage currents	71
3.4	Earth leakage circuit breakers	73
3.5	Protection against electric shock	75
3.6	Earth elecroce-Earthing conductor	75
3.7	Overcurrent protection	76
3.8	Effects of overcurrent	77
3.9	Short circuit protection	77
3.10	Protective devices	78
CHAPTE	ER 4	
BATH C	CALL SYSTEM	81
4.0	Introduction	81
4.1	Form of bath call system	81
4.2	Basic principle of operation of the system	82
CHAPTE	ER <u>5</u>	
STAND-	-BY SUPPLY	83
5.0	Inroduction	83
5.1	Standby generators	84
5.2	Emergency lighting	86
5.3	Positioning of emergency lighting	88
5.4	Calculation for the standby generator	90

CHAPTER 6

INSPEC	TION AND TESTING	92
6.0	Introduction	92
6.1	Visual inspection	92

Page

6.2	Continuity of ring final circuit conductor	93
6.3	Continuity of protective conductors	93
6.4	Insulation resistance	93
6.5	Polarity test	94
6.6	Operation of the residual current operated	
	protective device	94
CONCI	LUSIONS	95
REFE	RENCES	97
LEGEN	ND	98
APPEN	NDTCES	90