DESIGN OF A TRANSMITION AND CONTROL SYSTEM FOR AN AEROGENERATOR

Project report submitted by : CHRISTAKIS HADJIPAVLIS

In part satisfaction of the award of Diploma of Technician Engineer in Mechanical Engineering of the Higher Technical Institute of Cyprus.

Project Supervisor: Mr. M. Pattihis

B.Sc. (Eng.)

M.Sc. (Eng.) A.C.G.I.,D.I.C.

Senior Lecturer in Mechanical Engineering, H.T.I.

External Assessor : Mr. S. Savva

Type of Project : Individual

Group

.....

Nicosia, June 1989

HIGHER	PROJECT NO
TECHNICAL	
INSTITUTE	1512

ABSTRACT

This project is a complete design of a transmition and control system of an aerogenerator for domestic purposes. The use of wind as a power source is not new nor negligible, but the important point in our technoecomical society is the feasibility of such units.

Main topics which are critically examined are :

- Aerodynamic Design.

- Constructive Design.

CONTENTS

		PAGE
Acknowledg	nents	3
Abstract		4
Introductio	on	6
CHAPTER 1.:	BASIC CONCEPTS OF WIND POWER.	8
1.1 :	Energy available in the wind.	9
1.2 :	Wind Turbine Efficiency.	13
1.3 :	The Tip Speed Ratio. (U/V)	14
1.4 :	Power Coefficient.	15
CHAPTER 2.: CLASSIFICATION OF WIND POWER MACHINES.		s.17
2.1 :	Advantages and Disadvantages.	18
2.2 :	Horizontal Axis Wind Turbines.	19
2.3 :	Vertical Axis Wind Turbines.	23
2.4.1 :	Slow Running Wind Turbines.	25
2.4.2 :	Fast Running Wind Turbines.	25
CHAPTER 3.:	WIND CHARACTERISTICS.	26
3 1	Meteorology of wind	27
3.2	Global wind Circulation	29
3.3	Wind Characteristics	33
3.4	Measuring the Wind Speed	40
3.5 :	Wind Direction.	42
3.6 :	Wind Shear	44
3.7 :	Turbulence.	47
3.8 :	Side Survey.	48
3.9 :	Anemometers and Recorders	50
3.10 :	Air Temperature and pressure.	58
3.11 :	The Ralleigh Distribution.	60
CHAPTER 4.:	WEIBULL THEORY DISTRIBUTION	62
4.1 :	Wind Statistics.	63
4.2 :	Determination of Weibull Parameters.	65
4.3 :	Wind Energy Factor.	67
4.4 :	Load Factor.	70
4.5 :	Effect of Rated Wind Speed.	71
4.6 :	Effect of Height.	72
4.7 :	Seasonal Variation of Wind Power.	73
4.8 :	Diurnal Variation of Wind Power.	74

CHAPTER 5.: METHOD FOR CONTROLLING THE ROTATION OF THE ROTOR5.1: Governor Design5.2: Yaw Control.5.3: Shut off Control.6.:TRANSMITION81

6.1 : Types of Gearing 82 6.1.1 : Spur Gears. 82 6.1.2 : Helical and Spiral Gears 82 6.1.3 : Warn Gears. 🕯 83 6.2 : Belts. 83 6.2.1 : Flat Belts. 84 6.2.2 : "V" Belts. Carden see 6.2.3 : Timing Belts. Lance 6.3 : Roller Chain. 84 85 85

CHAPTER 7.: ROTOR DESIGN 86 7.1 : Rotor Design. 87 : Find the VR/V Ratio. 7.2 91 7.3 : Graph Obtained from the Weibull theory92 7.4 : Rotor Design for Larnaca. 94 7.5 : Force analysis of the Governor 103 7.6 : Determination of the Governor. 104 : Determination of the Spring. 7.7 106 : Rotor Design for Limassol. 7.8 108 7.9 : Determination of the Governor 117 7.10 : Determination of the Spring. 120 CHAPTER 8.: TRANSMITION DESIGN 121

8.1:Transmition design for Larnaca1238.2:Transmition design for Limassol124

126

CHAPTER 9.: HOW THE SYSTEM WORKS

9.1	: Design steps of the governor	127
9.2	: Explanation of page 103	128
9.3	: Explanation of drawing	129
9.4	: Main parts construction	129
9.5	: Main parts assembly	130
9.6	: Explanation of the clutch	130