HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DÍPLOMA PROJECT

DESIGN AND MANUFACTURE OF A DEMOSTRATION MODEL GEARBOX

M / 792

BY: CONSTANTINOU CONSTANTINOS

JUNE 1997

DESIGN AND MANUFACTURE OF A DEMONSTRATION MODEL GEARBOX

by

CONSTANTINOS CONSTANTINOU

Project Report submitted to

the Departement of Mechanical Engineering of the Higher Technical Institude Nicosia Cyprus

in partial fulfillment of the reguirements for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

JUNE 1997

Project Supervisor : Dr. L. Lazari

HIGHER	PROJECT
TOHNICAL	9MIL
VETITUTE	2/16

ACKNOWLEDGMENTS

Primarily I would like to express my gratitude to my Project Supervisor Dr. L. Lazaris, lecturer at the Higher Technical Institute, for his assistance, patience and encouragement throughout this project.

Special thanks to Mr. Christopher Genethliou and James Carl, Engineers at Stylson Engineering Co., for their assistance to manufacture some parts of the demonstration model gearbox.

Finally I would like to thank Mr. I. Angeli for his valuable help.

1

SUMMARY

TITLE :

DESIGN AND MANUFACTURE OF A DEMONSTRATION MODEL GEARBOX

WRITTEN BY : CONSTANTINOS CONSTANTINOY

This project is a procedure where the candidate gets familiar with Gear Generation.

The following objectives must be satisfied :

- 1. Design of a simple model gearbox. Primarily the design is the calculations for manufacturing the gears on a gear generation machine.
- 2. Produce engineering drawings of the Gearbox.

et. r

- 3. Manufacture the gearwheels. The Shaping Machine was decided that will be appropriate for the needs of this project.
- 4. Assumable the gearbox and test.

CONTENTS

INTRODUCTION

1-2

CHAPTER 1. GEARS

1.1	Conjucate Action	3-4
1.2	Involute Properties	5-6
1.3	Types Of Gears	7-11
1.4	Spur Gears	12-14

CHAPTER 2. GEAR GENERATION

2.1 Gear Hobbing	15-19
2.2 Gear Shaping	20-22
2.3 Straight Bevel Gear Manufacture	23-26
2.4 Worm Milling	27
2.5 Gear Finishing	28
2.6 Gear Shaving	29
2.7 Gear Grinding	30-31

CHAPTER 3. DESIGN OF THE DEMONSTRATION MODEL GEARBOX

an and	
3.1 Design Of Gears	32-37
3.2 Transmission Shafts	38
3.3 Support Shafts	38
3.4 Plates	38
3.5 Results	39

ASSEMBLY FIGURES

REFERENCES

DETAIL DRAWINGS

an n

1.18

INTRODUCTION

The purpose of this project, was to design and construct a demonstration model gearbox.

To understand the importance of mechanical systems for varying the speed consider the case of a car gearbox which the demonstration model gearbox is based on.

The purpose of the car gearbox is to vary the speed of a car, meaning the cases where high torque or high speed is needed.

High torque is needed when the car is starting to accelerate from a non moving position or when the certain car is overpassing a slower car.

High speed is needed when the car has reached a certain constant velocity and wants to accelerate in order to reach a higher velocity.

Also we can consider the case of machine tools for understanding the importance of gearboxes for varying the speed. In fact, most machine tools are so constructed that the speed of the cutting tool or of the part being operated upon can be varied, the range or extent of the variation depending upon the type of machine. These changes are desirable in order to cut different kinds of metal at the most efficient speed ; for example, soft brass may be turned, drilled, or planed at a much higher speed than cast iron or steel and by using the fastest speed that is practicable obviously the rate of production is increased.

The most important part of this project was that the gears had to be manufactured by the student on the shaping machine.

A gear is a mechanism which, by means of meshing teeth, transmits or converts motion, changing the angular velocity and torque between two moving systems.

Toothed gearing converts and transmits rotary motion between shafts with parallel, intersecting and non - parallel, non - intersecting (crossed) axes. It also converts rotary motion into translational motion and vice versa.

Furthermore toothed gearing is the most widely used and most important form of mechanical drive.

Gears are used in many fields and under a wide range of conditions, from watches and instruments to the heaviest and most powerful machinery. Peripheral forces from decimals of a gram to thousands of tons, torques up to a thousand ton - metres and power from negligibly small values to tens of thousands of killowatts are transmitted, using gears of diameter from a fraction of a millimeter to ten and more meters.

In comparison to other mechanical drives, toothed gearing has essential advantages, namely:

- (a) small overall size
- (b) high efficiency
- (c) long service life and high reliability

de al

- (d) constant speed ratio owing to the absense of slipping and
- (e) the possibility of being applied for a wide range of torques, speeds and speed ratios.