DESIGN OF A WATER TOWER IN STEEL

by

Panayiota L. Panteli

Project Report Submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia-Cyprus in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 1994

HIGHER	PROJECT NO
TECHNICAL	0000
INSTITUTE	2236

<u>ACKNOWLEDGEMENTS</u>

I would like to express my gratitude to all people who in anyway helped me during the execution of this project.

Acknowledgements are extended to Mr. D. Andreou for his active supervision and advice throughout this work.

Further, I would like to thank Mr. N. Charalambides, the external assessor, for kindly accepting to examine my project.

My thanks extend also to Mrs. M. Ioannou who has undertaken the responsibility of carrying through all typing work.

P. Panteli

<u>Summary</u>

The main objective of this project is to design a Water Tower in Steel for potable water.

The Water Tower will be constructed to act as a water reservoir, in a water supply system. The size of the tank depends on the capacity of water to be stored.

The cost of Water Tower depends mainly on its shape and on the type of structural material that is going to be used. In this project the Water Tower is made of Mild Steel, Grade 43.

The choice of the shape was done, taking into account the dimensions and properties of British Standard Sections in combination with other factors such as safety, economy and standard-size steel units available in the market.

The design comprises a square water tank 8.4x8.4x2.4 m, supported by a 15 m Tower.

Analytical design, construction drawings and connection details are prepared in this project. Provision of Access of the Tank and Maintenance of the Structure are mentioned.

CONTENTS

Page

Notation

Summary

PART 1

1.0	Introduc	tion	1
1.1	History	of steel	3
1.2	Types of	f steel	5
1.3	Steel An	d Concrete as structural materials	6
	1.3.1	Advantages of steel as a structural	
		material	6
	1.3.2	Disadvantages of steel as a structural	
		material	8
	1.3.3	Advantages and disadvantages of concrete	
		as a structural material	9
	1.3.4	Conclusions	10

<u>PART 2</u>

2.0	Design	of braced tower supporting water tank	11
	2.0.1	Particulars of scheme	11
	2.0.2	Layout of steelwork	11
2.1	Wind L	oad	16
	2.1.1	Investigation of Wind pressures	16
	2.1.2	Truss analysis	22

PART 3

3.0	Design of Tank-supporting Beams	27
3.1	Simple beam design	27
3.2	Design of Tower Members	42
3.3	Design of Foundation to Resists Uplift	47
3.4	Check on Estimate Data	48

PART 4

4.0	Connect	ions	49
4.1	General	notes	49
4.2	Riveted	Connections	49
	4.2.1	General	49
	4.2.2	Types of joints	51
	4.2.3	Failure of Riveted joints	52
4.3	Bolted C	Connections	54
	4.3.1	Types of Bolts	54
	4.3.2	Advantages of High-Strength Bolts	56
4.4	Welding		58
	4.4.1	Advantages and disadvantages of Welding	58
	4.4.2	Classification of Welds	60
4.5	Design o	of Connections	62
4.6	Provisio	n of Access of the Tank	75
4.7	Mainten	ance of the Structure	75

PART 5

5.0	Photographs	77
5.1	Water Towers in Steel	77
5.2	Water Towers in Concrete	78
Refer	ences	80

Appendix A

Appendix B

Drawings