MODES OF VIBRATION OF AN AEROPLANE MODEL

Project Report Submitted by SYMEONIDES STELIOS

In part satisfaction of the conditions for the

award of

Diploma of Technician Engineer in

Mechanical Engineering

of the

H. T. I.

Project Supervisor: Dr. Stassis Andreas Lecturer at the H.T.I.

JUNE 1990

HIGHER	PROJECT NO
TECHNICAL	INIM
INSTITUTE	

ii

SUMMARY

This project outlines a general procedure for modal testing, the main purpose of which is to find the mode shapes of vibrations of the aeroplane model and thus by studying these deficiencies suggest improvements to the dynamics of the structure.

It was necessary first to study the theory behind vibrations in structure in order to acquire more knowledge and be able to interpret the experimental results more thoroughly.

To obtain these mode shapes a testing had to be conducted on a simple construction of an aeroplane model. The testing layout involved many components which had to be studied theoretically before applying them in practice, and this is the purpose for including the chapter of Mobility Measurement Techniques as well as a brief description of the most important testing equipment.

The results obtained from the testing were further processed using a computer program to obtain the required form in order to enable the drawing of the mode shapes.

From the mode shapes acquired from the testing some suggestions were made for improving the structure, such as strengthening the structure to specific points where deficiencies were detected. Moreover some suggestion on newly developed high strength materials (like Keflar, Carbon, Titanium, Aluminium-Lithium) as well as high performance fibers and plastics.

CONTENTS

			Par	<u>te</u>
	Summary		Ė	ĺv
	Introduc	tion		v
			\$	
	Chapter	1.	Mechanical Vibrations	
		1.1	Introduction	1
		1.2	Undamped Free Vibrations	5
		1.3	Damped Free Vibrations	6
	,	1.4	Transient and Non Periodic	6
			Vibrations	
		1.5	Impulsive Excitation	6
- 		1.6	Vibrations in Structures	9
			Mechanical waves	
	Chapter	2.	Mobility Measurements Techniques	
		2.1	Introduction	13
		2.2	Basic Measuring Systems	13
		2.3	Structure Preparation	16
			(a) Free and Grounded	16
(Mar)			Supports	
		2.4	Exitation of the Structure	18
			(a) Mechanical Exciters	19
•			(b) Electromagnetic Exciters	19
			(c) Electrohydraulic Exciters	20
		2.5	Attachment to the Structure	20
		2.6	Hammer or Impactor Excitation	21
		2.7	Accelerometers	25
			(a) Introduction to Accelerometers	25
			(b) Description of Accelerometers	25
			(c) Sensitivity of Accelerometers	27
			(d) Accelerometer Mounting	29
			Techniques	
			(e) Errors due to Accelerometer	32
			Resonance	
			(f) Environmental Influences	33

	2.8	Preamplifier	33
	2.9	Fast Fourier Transforms (F.F.T.)	36
		(1) Fourier	36
		(2) Digital Fourier Analysis	38
		(a) Windowing & Sampling	38
		(b) How DFT works	40
		(c) Software	43
	2.10	Data Acquisition System	44
Chapter	з	Actual Testing Procedure	
	3.1	Testing and Learning the Data	48
		Acquisition System	
	3.2	Excitation of the test model over	52
		a large range of frequencies	
	3.3	Precise Frequency Excitation at	56
		each frequency	
	3.4	How the measurements of each mode	62
		was done	
	3.5	Results of the testing	63
	3.6	Mode shapes	64
Chapter	4	Improving the dynamics of the	74
		aeroplane	
Conclusi	lons		81
Referenc	ces		83
Appendic	es	·	