HIGHER TECHNICAL INSTITUTE ELECTRICAL ENGINEERING COURSE DIPLOMA PROJECT

DEVELOPMENT OF A VAR!ABLE D C (0 - 30V, 0 - 3A) REGULATED POWER SUPPL DEVELOPMENT OF A LEAD ACID - AUTOMATIC BATTERY CHARGER

E - 957

6

KOUIS ANDREAS NIKOU

JUNE 1995

DEVELOPMENT OF A VARIABLE D.C. (0-30V, 0-3A) REGULATED POWER SUPPLY

DEVELOPMENT OF A LEAD ACID-AUTOMATIC BATTERY CHARGER

Project report submitted by

KOUIS ANDREAS NIKOU

in part satisfaction of the award of Diploma of Technician Engineer in Electrical Engineering of the

HIGER TECHINICAL INSTITUTE CYPRUS

JUNE 1995

TO MY PARENTS AND FRIENDS

.

i

CONTENTS

			Pages	
Acknowledgment	5:		I	
Abstract:			II	
Instroduction:			III	
	A POV	VER SUPPLY		
<u>Chapter 1</u>	RELEVA	ANT THEORY		
	1.1 H	Power Supplies	1 -	2
	1.2 \	Voltage requlator	2 -	3
	1.2.1	Line regulations	3 -	4
	1.2.2	Load regulations	4	
	1.3 \$	Series requlator	4 -	5
	1.4 5	Shunt Regulator	5 -	6
	1.5 \$	Short-Circuit Protection	6 -	7
	1.5.1	Fold back short Circuit	+	
	I	protection	7 -	9
	1.6	Integrated Circuit Voltage		
	F	Regulator	9 -	10
<u>Chapter 2</u>	IVEST	IGATION SELECTION AND		
	EXPLAN	NATION ON CIRCUITS		
	2.1	Investigation/Explanations	11 -	- 15
	2.2 5	Selection/Explanation	15 -	- 21
Chapter 3	CONSTR	RUCTION		
	3.1 (Construction	22 -	- 24
Chapter 4				
	4.1 (Conclusion	25	

Pages

.

		B BATERY CHARGER				
<u>Chapter 1</u>		Charging princible 26				
		1.1.	Initial Charge	26		
		1.2	Charging in service	26	-	28
		1.3	Charign time and current	28		
		1.4	Starting and Finish rates	29		
		1.5	Step charging	29	-	30
<u>Chapter 2</u>		Char	ger and Battery Characteristica	31	-	33
<u>Chapter 3</u>		Charging methods		34		
		3.1	Constant Current Charging	34		36
		3.2	Constant-Voltage Charing	36	-	37
		3.3	Current-Voltage Control System	37	-	38
		3.4	Modified Constant-Voltage			
			Charging	38		
		3.5	Fast Charging	38	-	39
		3.6	Boost Charging	39		
		3.7	Trigkle Charging	39	-	40
		3.8	Float Charging	40	-	41
		3.9	Pulse Charging	41	-	42
		3.10	GAS-CONTROLED CHARGING	42	-	43
<u>Chapter 4</u>		Char	ging Equipment			
		4.1	Princibles of Rectification	44		
		4.2	Full wave Rectification	44	-	45
		4.3	Rectifiers	46	-	47
		4.4	Range of battery chargers	47		
		4.5	Charger output control	48		
	j.	4.6	Transformer tapping	49		
	*	4.7	Grid Control of mercury - ARC			
			Rectifiers	49		
		4.8	Silicon controlled Rectifiers	49	-	50
		4.9	Methods of terminating charge	50	-	51

Pages

÷

Chapter 5	Inve	stigation selection of circuit			
	5.1	Investigation	52	-	57
<u>Chapter 6</u>					
	6.1	Construction	58	-	60
Chapter 7					
	7.1	Testing	61		
APPENDICES			62	-	63

i

s

I would like to express my sincere thanks to my supervisor Mr S. Spyrou for his helpfull assistance during both the design and constrution stages of my project.

I also would like to express a great thanks to my cousin Kyriako Kouloumi for his help of construction the power sypply.

Also a special thanks to my parents and fiends for their support during the three years studies.

ó

ABSTRACT

This textbook deals with the designs construction and calibration of a variable d.c supply and also an automatic lead-acid battery charges.

The power supply unit offers an overcurrent protection.

After investigations of suitable circuits which looked to be promising the one most suitable was selected. The investiagions, selection and operation of the circuits are shown analytically.

The construction of PCB and all relevants are also shown in the text book.

Conclusion and suggestions are also included.

ĥ

The Appendices include some necessary calculations data sheets and characteristics of components

INTRODUCTION

This project deals with the Development of a variable DC (0-30V, 0-30A) regulated power supply and an automatic lead-acid battery charger.

The power supply unit provides the following:

- (a) The output voltage is adjustable up to 30V
- (b) Output current is up to 3A
- (c) Short circuit protection

The text consist first for the power supply 4 chapters and for the battery charger 7 chapters.

First, relevant theory is given both power supply and charger.

A lot of circuit have been investigated but the most significant are shown in the text.

The final circuits is then selected and its description and construction is described.

Complete testing was carried out.

6

Finally a fully evaluation of the work is carried out.