HICHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

PART PROGRAMMING ON A CNC VERTICAL MILLING MACHINE AND DESIGN OF A MILLING FEXTURE

M / 1034

NICOLAOU KYRIACOS

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

PART PROGRAMMING ON A CNC VERTICAL MILLING MACHINE AND DESIGN OF A MILLING FIXTURE

M / 1034

NICOLAOU KYRIACOS

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

PART PROGRAMMING ON A CNC VERTICAL MILLING MACHINE AND DESIGN OF A MILLING FIXTURE

M / 1034

NICOLAOU KYRIACOS

PART PROGRAMMING ON A CNC VERTICAL MILLING MACHINE

By

NICOLAOU KYRIACOS

PROJECT REPORT SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING OF THE HIGHER TECHNICAL INSTITUTE

NICOSIA-CYPRUS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DIPLOMA OF TECHNICAL ENGINEERING IN MECHANICAL ENGINEERING

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Vassilios Messaritis who is a lecturer in the mechanical engineering department of the Higher Technical Institute for guidance during my project period.

Also I would like to thank my parents because they are always in my side day by day.

Nicolaou Kyriacos 3rd year student in Mechanical Engineering H.T.I

ABSTRACT

The specific project was carried out to manufacturing components on the CNC vertical milling machine BRIDGEPORT IMKII and also to design and manufacturing of a milling fixture to clamping the component to be manufactured.

The main objective is the part programming for manufacturing three components and I have to use linear interpolation, circular interpolation, canned cycles and subroutines.

HIGHER TECHNICAL INSTITUTE NICOSIA – CYPRUS MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT 2006/2007

Project Number: M/1034

<u>Title:</u> "CNC part programming and machining on the vertical milling machine Bridgeport interact 1MKII."

Objectives:

- 1. Study the programming and machining characteristics of the Bridgeport 1MKII (with TNC 155 Heidenhein control) CNC vertical milling machine.
- v_2 . Produce detail drawings of the components to be manufactured.
- 3. Design a milling fixture to ensure location, support and clamping of the component to be manufactured. Detailed drawings of the proposed fixture must be prepared.
- 4. List the procedure to be followed for machining each of the two components.
- 5. Write a part program for the manufacture of each component.
- 6. Make use of Linear Interpolation, circular interpolation and canned cycles.
- 7. Test of the above programme on the Heidenhein Control simulation facility.
- 8. Construction of designed milling fixture and manufacturing of components selected on the CNC milling machine.

Terms and Conditions:

- 1. All recommendations should be according to ISO.
- 2. Selection of components for the milling fixture should be according to standard components.

Student	:	Nicolaou Kyriakos N. (3ME)
Supervisor	:	Dr Vassilios Messaritis

Chapter 1:

Pages

1. Numerical Control and Computer Numerical Control	
1.1 What are the NC and CNC	1
1.2 CNC Applications	5
1.3 Advantages and Disadvantages of CNC	5

Chapter 2:

2. Principle of N.C as applied to the machine	
2.1Types of NC Systems	7
2.1.1 Point to Point NC	8
2.1.2 Straight line control	8
2.1.3 Two axis contouring control	9
2.1.4 Three axis contouring with continuous path control	9
2.2 Types of Interpolation	9
2.2.1 Linear Interpolation	10
2.2.2 Circular Interpolation	11
2.3 Accuracy and Precision	12
2.4 Zero Points and Reference Points	13
2.4.1 Machine zero point	13
2.4.2 Machine reference point	14
2.4.3 Workpiece zero point and program zero point	15
2.4.4 Subroutines	15
2.4.5 Programming of subroutine	16
2.5 Canned Cycles	17
2.5.1 Programmable machining cycles	18
2.5.2 Programmable Coordinate Transformations	18
2.6 Absolute and Incremental Dimensions	18
2.6.1a Absolute Dimensions	18
2.6.1b Benefits of Absolute Dimensions	19

2.6.2a Incremental Dimensions	19
2.6.2b Benefits of incremental dimensions	19

Chapter 3:

3. Programming	
3.1 Programs and Programming	20
3.2 Programming words	20
3.3 Input Data	22
3.4 Geometrical Data	23

Chapter 4:

4. Cutting Tools	
4.1 Cutters for milling machine	24
4.2 Types of cutting tools	25

Chapter 5:

5. National Codes	
5.1 Character Code	27
5.2 G-Code	29
5.3 M-Code	31
5.4 Parametric Programming	32

Chapter 6:

6. Feed and Speed	
6.1 Cutting Speed	33
6.2 Spindle Speed	34
6.3 Feed Rate	35

Chapter 7:

_		
7	N/III	Inna
1	IVIII	III IU

7.1 What is milling?	37
7.2 Peripheral milling	37
7.3 Face milling	37
7.4 End milling	38
7.5 Up milling	39
7.6 Down milling	40

Chapter 8:

8. Fixture Design		41

Chapter 9:

9.1 Program of Component 1	43
9.2 Program of Component 2	47
9.3 Program of Component 3	53
Conclusions	56
References	
Appendices	58