### HIGHER TECHNICAL INSTITUTE

# ELECTRICAL ENGINEERING COURSE

# DIPLOMA PROJECT

# DESIGN OF THE ELECTRICAL SERVICES OF A FACTORY

E/993
VARNAVA VARNAVAS
JUNE 1995

## HIGHER TECHNICAL INSTITUTE

**NICOSIA - CYPRUS** 

#### **ELECTRICAL ENGINEERING DEPARTMENT**

**DIPLOMA PROJECT** 

DESIGN OF THE ELECTRICAL SERVICES OF A FACTORY

**VARNAVA VARNAVAS** 

E.993

**JUNE 1995** 



# DESIGN OF THE ELECTRICAL SERVICES OF A FACTORY

# BY: VARNAVA VARNAVAS

Project report submitted to the

Department of Electrical Engineering of the

Higher Technical Institute

Nicosia - Cyprus

in partial fulfilment of the requirements

for the diploma

# TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

Project supervisor:

Mr E. Michael

Lectures of the Electrical

Engineering Requitement H.T.I

**JUNE 1995** 

2470

1.0.

#### **ACKNOWLEDGMENTS**

I would like to express my personal thankto my project supervisor Mr. E. Michael lecturer of the Electrical Engineering Department of H.T.I.

My thanks also to my family for their support and guidance throughout the three years in H.T.I.

Many thank to Frosoulla for her excellent work at typing this project.

### **CONTENTS**

|       |                                                | Page |
|-------|------------------------------------------------|------|
| ABST  | RACT                                           |      |
|       |                                                |      |
| CHAP  | TER 1: Illumination Design                     |      |
|       |                                                |      |
| 1.1   | Definition and unit used                       | 1    |
| 1.2   | The lumens method of design                    | 3    |
| 1.3   | Illumination Design calculations               | 4    |
| 1.4   | Table of results                               | 8    |
| ana n | mpp 2. Tield simults                           |      |
|       | TER 2: Light circuits                          | 0    |
| 2.1   | General procedure                              | 9    |
|       | Typical calculations                           | 12   |
| 2.3   | Table for lighting circuits                    | 15   |
| СНУБ  | TER 3: Single and three phase socket outlet    |      |
| 3     | General                                        | 16   |
|       | Typical calculation for Ring circuit           | 16   |
|       | Typical calculation for 3 phase radial circuit | 20   |
| 3.3   | Table of result for socket outlets             | 23   |
|       |                                                |      |
| CHAP  | TER 4: Machines                                |      |
| 4.    | Table of Machines                              | 24   |
| 4.1   | Installation of Machines                       | 25   |
| 4.2   | Table of Machine load Design Results           | 29   |
|       |                                                |      |
|       | TER 5: Burglar alarm installation              |      |
| 5.1   | General                                        | 30   |
|       | Equipment used                                 | 30   |
| 5.3   | Table for Burglar alarm system                 | 32   |

| CHAPTER 6: Fire Alarm installation                 |    |  |  |
|----------------------------------------------------|----|--|--|
| 6.1 General                                        | 34 |  |  |
| 6.2 Equipment used                                 | 34 |  |  |
| 6.3 Installation of fire alarm system              | 36 |  |  |
| 6.4 Table for fire alarm system                    | 37 |  |  |
|                                                    |    |  |  |
| CHAPTER 7: Telephone installation                  |    |  |  |
| 7. General                                         | 39 |  |  |
| 7.1 Wiring schematic                               | 40 |  |  |
| CHAPTER 8: Earthing                                |    |  |  |
| 8.1 General                                        | 43 |  |  |
| 8.2 Definitions                                    | 43 |  |  |
|                                                    | 43 |  |  |
| 8.3 Earthing Arrangement                           | 43 |  |  |
| CHAPTER 9: Main Swithgear - Distribution boards    |    |  |  |
| 9.1 General                                        | 50 |  |  |
| 9.2 Protection                                     | 50 |  |  |
| 9.3 Diversity                                      | 53 |  |  |
| 9.4 Balancing                                      | 54 |  |  |
| 9.5 Distribution boards results                    | 61 |  |  |
| 9.7 Fault Level calculations - Distribution boards | 63 |  |  |
|                                                    |    |  |  |
| CHAPTER 10: Power Factor correction                |    |  |  |
| 10.1 Introduction                                  | 77 |  |  |
| 10.2 Method of power factor correction             | 78 |  |  |
| 10.3 Calculations for p.F improvement              | 79 |  |  |
| CVIDORED 41 ave and 1 ave a 1 marsh to a           |    |  |  |
| CHAPTER 11: Inspection and Testing                 |    |  |  |
| 11.1 General                                       | 80 |  |  |
| 11.2 Visual inspection                             | 80 |  |  |
| CHAPTER 12 Costing                                 |    |  |  |
| General                                            |    |  |  |
| Tables of calculations                             |    |  |  |

#### **ABSTRACT**

This project deals with the design of the electrical installation of a factory.

#### The main objectives are:

- To design the complete electrical services for a specified factory which will include the following.
  - (a) Fire and Burglar Alarm systems
  - (b) Telephone installation and internal communication
  - (c) Power Factor correction
- 2. To study the illumination engineering work involved
- 3. To provide the necessary diagrams schedule of material and costing including labour

#### Terms conditions and Assumption

- 1. Supply voltage: 415 V rms 50Hz, TT earthing system.
- The efficiency and power factor of high power circuits where not gives and considered to be 0.8.
- 3. The cables used are:
  - (a) Single core PVC insulated cables non armoured.
  - (b) Multi core armoured PVC insulated cables.
- 5. The external earth fault loop impedance is equal to 0.50.