THE USE OF GLASS IN MULTISTOREY BUILDINGS

by

Antonis Stylianou

Project Report

Submitted to

Ś

the Department of Civil Engineering

of the Higher Technical Institute

Nicosia - Cyprus

In partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

IN

CIVIL ENGINEERING

June 1999

SUMMARY

"The use of Glass in Multistorey Buildings"

By

Antonis Stylianou

The purpose of this project is to provide useful information about the use of glass in multistorey buildings. In the introduction we meet the glass as a material and as a new constructional material used in Cyprus the last 20 years. In the next chapter we see how glass used in structures through history. For a better understanding, the characteristics and the processes of glass are described in chapter 3 and 4. Chapter 5 and 6 describe the functions and performances of each type of glass. Structural glazing is included in the project as a whole chapter 7 because it gives a special meaning in the use of glass in buildings, not as glass for windows but as glass-skin for external walls. The next two chapters provide information regarding installation, maintenance and special points, considering the right and proper use of glass. Finally at chapter 10 and 11 we see the advantages, disadvantages and costs regarding glass when it is been chosen for external walls instead of masonry.

CONTENTS

ACKNOWLEDGEMENTS

SUMMARY

1.0 INTRODUCTION	1 - 7
1.1 Glass in general	1
1.2 The use of glass in multi-storey buildings in Cyprus	1 - 2
2.0 HISTORY OF ARCHITECTURAL GLASS	8 - 10
2.1 The building structure	8
2.2 Aesthetics	8
2.3 Comfort	9
2.4 The flow of natural light	10
2.5 The future of glass	10
3.0 LIGHT AND ENERGY CHARACTERISTICS OF GLASS	11 - 16
3.1 Solar radiation	11 - 12
3.2 Direct Solar Energy	12 - 13
3.3 Indirect Solar Energy	13 - 14
3.3.1 U-value (European)	14
3.3.2 U-value (American Standard)	15
3.4 Light	16
4.0 PROCESSES OF GLASS	17 - 23
4.1 Production of float glass	17
4.2 Coloration in the mass	17 - 18
4.3 Coatings	19

4.4 Low-E coating	19
4.5 Coating positions	20
4.6 Processing of coating	20
4.6.1 Pyrolisis	20 - 21
4.6.2 Electromagnetic process in vacuum	21
4.7 Special treatments of glass	22
4.7.1 Lamination	22
4.7.2 Addition of wire	22
4.7.3 Toughening and heat strengthening	23
4.7.4 Sandblasting	23
5.0 GLASS FUNCTIONS	24 - 31
5.1 Aesthetic function	24 - 25
5.2 Thermal insulation	25
5.3 Solar control	26
5.4 Safety and Security	26 - 28
5.5 Acoustic function	29
5.6 Fire resistance	30
5.7 Privacy	31
6.0 TYPES OF ARCHITECTURAL GLASS	32 - 45
6.1 Clear glass	32
6.2 Absorbing glass	32 - 34
6.3 Reflective glass	34 - 40
6.4 Multi-fuctional glasses	41
6.4.1 Aesthetic glass	41 - 42
6.4.2 Safety and security glass	42 – 43
6.4.3 Fire protection glass	44
6.4.4 Sound reduction glass	44 - 45

7.0 STRUCTURAL GLAZING	46 - 48
7.1 A new curtain-wall technique	46
7.2 Advantages of structural glazing	46
7.3 Types of structural glazing	47- 48
8.0 GLAZING-GENERAL INSTRUCTIONS AND MAINTENANCE	49 - 60
8.1 General installation of the glass	49
8.2 Frame requirements	49 - 51
8.3 Determination of glass thicknesses in building	52 - 53
8.4 Blocking	54 - 55
8.5 Sealing	56
8.6 Choice of sealant	56 - 58
8.7 Storage	58
8.8 Handling on site	58 - 59
8.9 Cleaning and repairing	59 – 60

9.0 CONSIDERATIONS IN DESIGNING OF BUILDINGS WITH GLASS	61 - 69
9.1 Orientation	61
9.2 Location and use of the structure	61 - 62
9.3 Environment and aesthetics	62 - 63
9.4 Climatic conditions	63
9.4.1 Sun exposure and temperature variations	63 - 65
9.4.2 Winds	66
9.5 Air conditioning and heating requirements	66 - 67
9.6 Condensation	67 -68
9.7 Thermal fracture	68 –69

- ----

10.0 ADVANTAGES AND DISADVANTAGES 70 - 71

11.0 COST COMPARISON

\$

12.0 CONCLUSIONS

13.0 REFERENCES

74

73

72