THE RELATIONSHIP BETWEEN THE

MOISTURE CONTENT, THE DENSITY

AND THE STRENGTH OF SOILS

(Experimental)

by

Nicolas Mouskoundis

and

Phidias Georgiou

Project Report

Submitted to

The Department of Civil Engineering

Of the Higher Technical Institute

Nicosia-Cyprus

In partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 2001

SUMMARY:

The object of this project was to determine the relationship between the moisture content, the dry density and the strength of soils. The soil tested was the crusher run and for the determination of the above, the California Bearing Ratio (C.B.R.) test and the Proctor test were carried out.

The project is divided in five chapters and a brief description of each chapter is given below:

The first chapter gives an account on the soil stabilization and mentions the properties of soil.

The second is referred to mechanical stabilization and densification (general).

The third chapter deals with the C.B.R. test in detail.

It mentions the purpose, scope and the basis of this test and also how the C.B.R. value is calculated.

In the fourth chapter we can see an experimental study in order to examine the influence of dry density and moisture content of a soil on its strength.

In the last chapter there is a presentation of the project's results and graphs. Furthermore the conclusions are present in chapter five, with the references and appendixes. **CONTENTS**

ACKOWLEDGEMENTS

SUMMARY

CHAPTER ONE		
STABILIZATION OF SOILS	1	
CHAPTER TWO		
MECHANICAL STABILIZATION AND DENSIFICATION	3	
- General - Usage	3 3	
FACTORS AFFECTING MECHANICAL STABILIZATION	4	
 Mechanical strength of the aggregate Mineral composition of the materials Particle-size distribution (grading) 	4 4 5	
COMPACTION		
 How compaction is affected by dry density and moisture content 	6	
MATERIALS		
 Course particles – Grading Fine particles – Plasticity 	7 8	
DURABILITY	8	
DESIGN OF FLEXIBLE PAVEMENTS	9	
 Terminology Elements of a flexible pavement 	9 9	
SURFACE COURSE	10	
ROADBASE	10	
SUBBASE	10	
CAUSES OF STRUCTURAL FAILURE		

STANDARD COMPACTION TEST PROCEDURES		12
-	Types of test	12
-	"Ordinary" Compaction test – Proctor test	12
-	Test procedure	12
-	Proctor test results	14
-	Dry Density against water content graph	16

CHAPTER THREE

CA	LIFORNIA BEARING RATIO (C.B.R.) TEST	17
-	Purpose and scope	17
-	Principle	17
-	Basis of test	17
-	Compaction method	18
-	Limitations	18
-	Relationship between CBR, dry density and moisture content	19
-	Calculation of C.B.R. (Example)	19

CHAPTER FOUR

LABORATORY INVESTIGATION

21

- CBR results
- Graphs

CHAPTER FIVE

CONCLUSIONS

APPENDIX

REFERENCES