HIGHER TECHNICAL INSTITUTE IELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

INVESTIGATION OF AYLA NAPA SYSTEM CONDITIONS AND THE NEED FOR THE ESTABLISHMENT OF A NEW TRANSMITION SUBSTATION IN THE AREA

MECHAEL SOLOMOU

E/1038

1996

INVESTIGATION OF AYIA NAPA SYSTEM CONDITIONS AND THE NEED FOR THE ESTABLISHMENT OF A NEW TRANSMISSION SUBSTATION IN THE AREA

PROJECT REPORT SUBMITTED by MICHAEL SOLOMOU

E.1038

in partial fulfilment of the requirements for the award of the diploma of

TECHNICIAN ENGINEER

in

ELECTRICAL ENGINEERING

of

THE HIGHER TECHNICAL INSTITUTE, NICOSIA, CYPRUS

June 1996

Project supervisor: Mr. Ch. Chrysafiades External supervisor: Mr. C. Gabrielides

INVESTIGATION OF AYIA NAPA SYSTEM CONDITIONS AND THE NEED FOR THE ESTABLISHMENT OF A NEW TRANSMISSION SUBSTATION IN THE AREA

TABLE OF CONTENTS

		Page
ACKNOWLEDGEMENTS		i
SUMMARY		ii
INTRODUCTION		
		iii
1. CHAPTER ONE: THE ELECTRICITY AUTHORITY OF CYPRUS		
1.1.0. Introduction		1
1.2.0. System Development of Urban Areas		2
1.2.1. Procedure of the System Studies	1	2
2. CHAPTER TWO: BASIC CONCEPTS		
2.1.0. The Per Unit System		5
2.2.0. Busbars		7
3. CHAPTER THREE: TRANSMISSION AND DISTRIBUTION IN CYPRUS		
3.1.0. Principles of Operation		10
3.2.0. Voltage Regulation		12
3.2.1. Capacitors		13
3.3.0. System Parameters		14
3.3.1. Fuses		14
3.3.2. Switches		14
3.3.3. Circuit Breakers		15
3.3.4. Relays		15
3.3.5. Voltage Transformers		15
3.3.6. Current Transformers		16

TABLE OF CONTENTS

			Page
	3.4.0.	The E.A.C. Substations	16
4.	CHAPTE	R FOUR: POWER SYSTEM COMPONENTS MODELING	
	4.1.0.	The Nature of Components Modelling	18
	4.2.0.	Basic System Components Modelling	19
		4.2.1. Generator	19
		4.2.2. Transformer	20
		4.2.3. Transmission Lines	21
		4.2.4. Loads	22
		4.2.5. Shunt Elements	22
5.	CHAPTE	R FIVE: THE LOAD FLOW PROBLEM	
	5.1.0.	Introduction	23
	5.2.0.	The Nature of the Load Flow Studies	24
	5.3.0.	Solution of the Load Flow Problem	26
		5.3.1. The Nodal Admittance Matrix	27
		5.3.2. Convergence	28
6.		R SIX: THE PSA PC APPLICATIONS	
	6.1.0.	Introduction	30
		6.1.1. General Characteristics of the Load Flow Studies	30
	6.2.0.	The Load Flow Option	32
		6.2.1. General Futures	32
		6.2.2. Running the Load Flow Option	33

TABLE OF CONTENTS

7.	CHAPTER SEVEN: AYIA NAPA SYSTEM ANALYSIS			
	7.1.0.	Introduction	37	
	7.2.0.	Procedure of System Analysis	38	
		7.2.1. Rate of Increase of Ayia Napa System Loads	38	
	7.3.0.	The Existing Ayia Napa System	41	
		7.3.1.0. Fault Conditions	44	
		7.3.1.1. Disconnection of La Casa Feeder	44	
		7.3.1.2. Disconnection of Kryo-Nero Feeder	45	
		7.3.1.3. General Comments	45	
8.	CHAPTEI	R EIGHT: ESTABLISMENT OF AYIA NAPA TRANSMISSION S/S		
	8.1.0.	Introduction	47	
	8.2.0.	Procedure of Studies	47	
	8.3.0.	Proposed Solutions	48	
		8.3.1.0. Proposed Solution 1	49	
		8.3.2.0. Proposed Solution 2	52	
		8.3.2.1. Verification of Results. Case 1	53	
		8.3.2.2. Verification of Results. Case 2	54	
		8.3.2.3. Further Comments	55	
9.	CHAPTEI	R NINE: CONCLUSIONS		
	9.1.0.	General Comments on the Nature of the Problem	56	
		9.1.1. Overview of Ayia Napa Area Existing System Conditions	56	
		9.1.2. Establishment of a New Transmission Substation in the Area	58	

Page

TABLE OF CONTENTS

REFERENCES

APPENDICES

APPENDIX A: System Conditions in Ayia Napa Area
APPENDIX B: Single Line Diagrams
APPENDIX C: Topographic Maps
APPENDIX D: Load Flow Files
APPENDIX E: Basic Concepts in the PSA Program. The Load Flow Module
APPENDIX F: General Information

ķ

ACKNOWLEDGEMENTS

ķ

For the expedition of this diploma project report, I would like to express may deep thanks to the people that have helped me throughout this difficult effort. Especially, I would like to thank my supervisor Mr. Charalambos Chrysafiades and to express my gratitude for his guidance and advice, that helped a great deal for the completion of this project. I would also like to thank, my external supervisor, Mr. Costas Gabrielides for his significant and sometimes vital guidance and assistance that made this project a reality.

I would like to express my love and gratitude to my family who stood by me whenever I needed their help and support. This project is dedicated to them. Finally I would like to thank my close friends, who tolerated me and offered their support, during the endless hours of study and preparation of this diploma project report.

Michael Solomou, June 1996

P

SUMMARY

INVESTIGATION OF AYIA NAPA SYSTEM CONDITIONS AND THE NEED FOR THE ESTABLISHMENT OF A NEW TRANSMISSION SUBSTATION IN THE AREA

by

Michael Solomou

E.1038

The main objective of this diploma project report, is the enforcement in the best possible way, of the power network that serves Ayia Napa area. The project studies the existing system and determines the weak points of the system. This is done by examining the system under various operational conditions. This includes observation in the behaviour of the system in cases of disconnection of main feeders due to prospective fault situations, or in cases of possible modifications in the existing system, by the dismantle of existing connections and their replacement with more suitable connections. Consequently, the system is examined under several loading conditions, so that there can be a clear determination of the point in time in which the system shall be unable to preserve its stability and furthermore, its operation will sustain economical losses.

This specifies the point in time in which it will be necessary to reinforce the existing system in a more effective way, by establishing a new transmission substation in the area. The system including the new transmission substation is examined and alternative medium voltage reinforcements are discussed, so that the new transmission substation is made as operative as possible. Detailed statistic graphs, as well as single line diagrams and topographic maps are employed, in order to represent the existing and future system conditions as clear as possible. In addition to that, the Power System Analysis (PSA PC Applications) program is used throughout this project, in order to perform the studies mentioned above without laborious efforts and waste of time.

ii