HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT

> DESIGN OF AN AIR CONDITIONING System for a block of offices

> > M/807

PHILIPPIDES GEORGE

JUNE 1997

DESIGN OF AN AIR CONDITIONING SYSTEM

FOR A BLOCK OF OFFICES

by

PHILIPPIDES GEORGE

Project Report

Submitted to

the Department of Mechanical Engineering of the Higher Technical Institute

Nicosia Cyprus

in partial fulfilment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June	1997
FROMER	PROJECT FO
TECHN OAL	2730

ACKNOWLEDGEMENTS

The completion of this project would have not been attained without the appreciable help of all the persons who contributed to it and whom I would like to thank.

First of all, I would like to express my sincere thanks and appreciation for the help and guidance given to me throughout this project by my project superior MR THEODORO SYMEOU.

My special thanks to MR ANDREAS CHRYSANTHOU Manager of Air Conditioning department at Phanos N Epiphaniou LTD for the information offered me about VRV system.

Finally I would like to thank MRS ANNA MARIA PAVLOU Mechanical Engineer, for the advise and information she offered me for the selection of the system and information concerning the whole project.

This project is dedicated to my parents

÷

CONTENTS

SECTION	PAGES
Acknowledgements Summary Introduction	II III IV
CHAPTER 1: ESTIMATION AND CALCULATION OF U-VALUES	
1.1 Estimation of U-Values	2
1.1.1 Thermal Resistances of Materials 1.1.2 Surface Resistances 1.1.3 Thermal Resistances of air spaces	3 3 4
1.2 Calculation of U-Value	
1.2.1 External Wall 1.2.2 Internal Wall 1.2.3 Floor 1.2.4 Roof 1.2.5 Window 1.2.6 Internal Partition	5 6 7 8 9 10
1.3 Summary of U-Value	11
CHAPTER 2: DESIGN CONDITIONS	
2.1 Introduction	13
2.2 Selection of Design Conditions	13
CHAPTER 3: AIR CONDITIONING LOAD	
3.1 Estimation of Air Conditioning Load	15
3.2 Heating Load Calculation	15
3.2.1 Transmission Losses	16
3.2.2 Infiltration losses	17
3.3. Cooling load calculation	17
3.3.1 Transmission Calculation	18
3.3.2 Radiant Solar Energy Loads Through Glass	18
3.3.3 Room Load	19
3.3.4 Excess Outside Air	19
3.4 Load Calculation	20

	3.4.1 Space Name	20
	3.4.2 Exterior Wall Information	20
	3.4.3 Roof Information	20
	3.4.4 Wall Area	21
	3.4.5 Glass Information	21
	3.4.6 Shading Information	21
	3.4.7 Glass area	22
	3.4.8 Miscellaneous Information	22
	3.4.9 Partition, ceiling and floors	22
	3.4.10 Cooling and Heating Season Infiltration and Basement Element	23
	3.4.11 Zone Input Sheet	25
CHAPTER	4: AIR CONDITIONING SYSTEMS	
21.5	Central Station System	28
	-	
4.2	Unitary or Packaged Systems	29
	Split-Unit System	29
	VRV System	29
CHAPTER	5: SYSTEM SELECTION	
5.1	VRV System	31
5.2	Operation of VRV System	34
CHAPTER	6: SIZING AND SELECTION OF EQUIPMENT	
6.1	Outdoor Unit	40
	6.1.1 Selection of Outdoor Unit	40
6.2	Indoor Units	41
	6.2.1 Selection of Indoor Units	41
6.3	Temperature Control	42
	6.3.1 Selection of temperature control	43
6.4	A.H.U.	43

	6.4.1 Selection of A.H.U. with D.X. coil	44
6.5	Ventilation Fans	46
	6.5.1 Selection of Ventilation Fans	46
6.6	Supply and return Grills	47
	6.6.1 Selection of Supply and Return Grilles	48
CHAPTER	7: DUCTWORK	
7.1	Duct Sizing	65
	7.1.1 Velocity method	66
7.2	Supply and Return duct Sizing	67
CHAPTER	8: PIPEWORK	
8.1	Pipesizing	79
CHAPTER	9: MAINTENANCE	
9.1	Introduction	89
9.2	Outdoor Units	89
9.3	Indoor Units	89
9.4	A.H.U. with DX coil	89
9.5	Ventilation Fan	90
9.6	Pipes	90
9.7	Ducts	90
CHAPTER	10: ESTIMATED COST ANALYSIS	92
CHAPTER	11: CONCLUSION	94
REFERENCE	S	97
APPENDIX	1	
APPENDIX	2	

APPENDIX 3

MANUFACTURERS CATALOGUES

POCKET WITH DRAWINGS

GROUND FLOOR - Air Conditioning System and Piping Layout
FIRST FLOOR - Air Conditioning System and Piping Layout
SECOND FLOOR - Air Conditioning System and Piping Layout

GROUND FLOOR - Duct layout FIRST FLOOR - Duct Layout SECOND FLOOR - Duct Layout

ROOF PLANT - Schematic circuit for Piping

SUMMARY

The aim of this project is to design An Air Conditioning System for a Block of Offices. The building chosen is the CYTA ACROPOLIS building in Nicosia.

Architectural drawing for the building were provided Design Conditions were supplied, while ambient condition were based on data collected from the Meteorological Service.

Energy conservation considered as a major factor in the design of the System.

The thermal load of the building for heating and cooling were calculated using the "CARRIER" program.

A complete set of detailed mechanical drawings is being provided in which the location of all air conditioning equipment including pipe sizing, duct sizing and controls, are illustrated.

INTRODUCTION

Air conditioning has its beginnings with mechanical refrigeration in the late 1900's, but entered customer acceptance about 20 years ago and nowadays is undoubtedly a customer demand.

Nowadays the word "COMFORT" is very much favoured in everybody's talk.

When dealing with comfort conditions we mean a specific temperature, humidity, velocity and cleaningness of air in a space that it is of our interest and we require the above parameters to be at a certain level. Comfort conditions can be achieved with a complete Air-Conditioning System.

Air Conditioning Systems can be classified as:

- a. Comfort air conditioning systems
- b. Industrial air conditioning systems

A second classification of Air Conditioning System is with respect to the season of the year. These are:

- a. Winter air conditioning systems
- b. Summer air conditioning systems
- c. Year round air conditioning systems

A third classification exists with respect to equipment

IV

arrangement:

- a. Central station systems
- b. Unitary systems
- c. Combination systems

The aim of this project is to design an Air Conditioning System for block of offices to achieve prespecified comfort conditions by taking into consideration safety, reliability, efficiency and cost limitations. Also energy conservation is to be considered as a major factor in the design of the system.

With reference to the above systems classification and specific factors that must be taken into consideration, the following system was selected:

- With reference to the first classification comfort air conditioning system was selected.
- b According to the second classification a year round air conditioning system was chosen.
- c. For the third classification unitary system was selected. The system selected is the new VRV (Variable Refrigerator Volume) system and an Air Handling Unit with DX coil to complete the system of the building.

1

V